

 Ensemble Verification Service (EVS)

 Version 5.6

 Release notes

 Dr. James D. Brown

 Hydrologic Solutions Limited, Southampton, UK.

 evs@hydrosolved.com

HSL

mailto:evs@hydrosolved.com

2

Preface

The Ensemble Verification Service (EVS) is a Java-based software tool originally

developed by the U.S. National Weather Service’s Office of Hydrologic Development

(OHD) and, subsequently, by Hydrologic Solutions Limited (HSL), Southampton, UK.

The software is currently developed and marketed by HSL as the Ensemble

Verification System. The EVS is designed to verify ensemble forecasts of hydrologic

and hydrometeorological variables, such as temperature, precipitation, streamflow

and river stage. The software is intended to be flexible, modular, and open to

accommodate enhancements and additions, not only by its developers, but also by

its users. The EVS is “open source” software and is released under the GNU Lesser

General Public License (LGPL), Version 3.0. We welcome your participation in the

continuing development of the EVS toward a versatile and standardized tool for

ensemble verification.

EVS Primary Point of Contact, evs@hydrosolved.com

Acknowledgments

Parts of this work were funded by NOAA’s Advanced Hydrologic Prediction Service

(AHPS) and by the Climate Prediction Program for the Americas (CPPA).

mailto:evs@hydrosolved.com

3

Disclaimer

This software and related documentation was originally developed by the National

Weather Service (NWS) and, subsequently, by Hydrologic Solutions Limited (HSL),

hereafter referred to as “The Developers”. Pursuant to title 17, section 105 of the

United States Code this software is not subject to copyright protection and may be

used, copied, modified, and distributed without fee or cost. Parties who develop

software incorporating predominantly NWS developed software must include notice,

as required by Title 17, Section 403 of the United States Code. The Developers

provide no warranty, expressed or implied, as to the correctness of the furnished

software or its suitability for any purpose. The Developers assume no responsibility,

whatsoever, for its use by other parties, about its quality, reliability, or any other

characteristic. The Developers may change this software to meet their own needs or

discontinue its use without prior notice. The Developers cannot assist users without

prior agreement and are not obligated to fix reported problems. The EVS is released

under the GNU Lesser General Public License (LGPL) Version 3.0. A copy of the

LGPL is provided with this distribution.

4

Contents

1.0 Changes from EVS 5.5 to EVS 5.6 .. 5

2.0 Changes from EVS 5.4 to EVS 5.5 .. 18

3.0 Changes from EVS 5.3 to EVS 5.4 .. 28

4.0 Changes from EVS 5.2 to EVS 5.3 .. 33

5.0 Changes from EVS 5.1 to EVS 5.2 .. 59

6.0 Changes from EVS 5.0 to EVS 5.1 .. 68

7.0 Changes from EVS 4.0 to EVS 5.0 .. 78

7.1 Changes in default behavior .. 78

7.2 Bug fixes related to Graphical User’s Interface .. 78

7.3 Bug fixes not related to Graphical User's Interface .. 79

7.4 Feature upgrades and modifications related to Graphical User's Interface 82

7.5 Feature upgrades and modifications not related to Graphical User's Interface 83

7.6 Feature upgrades and modifications for developers .. 86

8.0 Changes from EVS 3.0 to EVS 4.0 .. 87

8.1 Changes in default behavior .. 87

8.2 Bug fixes related to the Graphical User’s Interface.. 87

8.3 Bug fixes not related to Graphical User’s Interface.. 87

8.4 Feature upgrades and modifications related to Graphical User’s Interface 88

8.5 Feature upgrades and modifications not related to Graphical User's Interface 89

8.6 Feature upgrades and modifications for developers .. 91

9.0 Changes from EVS 2.0 to EVS 3.0 .. 92

9.1 Changes in default behavior .. 92

9.2 Bug fixes related to Graphical User's Interface .. 92

9.3 Bug fixes not related to Graphical User's Interface .. 93

9.4 Feature upgrades and modifications not related to Graphical User’s Interface 93

9.5 Feature upgrades and modifications related to Graphical User's Interface 98

9.6 Feature upgrades and modifications for developers .. 99

10.0 Changes from EVS 1.0 to EVS 2.0 .. 100

10.1 Feature upgrades and modifications related to Graphical User's Interface 100

10.2 Feature upgrades and modifications not related to Graphical User's Interface 100

11.0 Changes from EVS 1.0 BETA to EVS 1.0 ... 102

11.1 Feature upgrades and modifications related to Graphical User's Interface 102

11.2 Feature upgrades and modifications not related to Graphical User's Interface)........ 102

5

1.0 Changes from EVS 5.5 to EVS 5.6

Fix: Failure to associate the correct logical condition with a detection limit [BUG]

Description

An advanced option within the “Other options” dialog of the

evs.gui.windows.MoreInputDialog.java allows for the application of a detection limit to

observed and forecast values. Specifically, observed and forecast values that meet a

prescribed condition (e.g. greater than a particular threshold) are assigned an

inadmissible value. In practice, when using the GUI to assign a threshold, the wrong

logical condition was associated with that threshold. Consequently, a different

detection limit (logical condition) was assigned to the observed and forecast values

than intended.

Cause

Logical conditions are displayed in the MoreInputDialog.java using the

evs.gui.utilities.DisplayLogicPar.java, where each condition is mapped to a unique

identifier. Among other things, this identifier is used to construct an

evs.utilities.mathutil.DetectionLimit.java. In practice, the identifiers used in the

DisplayLogicPar.java differed from those in the DetectionLimit.java. This led to an

incorrect mapping between logical conditions and hence to the assignment of an

incorrect logical condition in the MoreInputDialog.java.

Fix

Updated the integer identifiers associated with logical conditions in the

DetectionLimit.java for consistency with those in the DisplayLogicPar.java.

Notes

Tested the updates by assigning each possible logical condition in the

MoreInputDialog.java and, hence, in the DisplayLogicPar.java. In each case, the

correct assignment was propagated to the DetectionLimit.java.

Fix: Corruption of an Aggregation Unit (AU) when selecting multiple AUs [BUG]

Description

When selecting multiple AUs in the first window of the Aggregation Stage, the

parameters associated with the final AU in the selection were incorrectly assigned to

those associated with the first AU in the selection. This led to an inconstancy

between the saved state of the AUs and the displayed state, which propagated to

6

(and corrupted) the local store of parameter values. Consequently, an error was

thrown on attempting to save the project, as more than one AU had been (incorrectly)

assigned with the same identifier (which is not allowed).

Cause

When creating a new AU or loading an existing AU, the parameters associated with

that AU are added to a local store in the evs.gui.windows.AggregationA.java. This

local store is coordinated with a change in the selected AU; that is in the table of

AUs. Specifically, a change in the selected AU leads, first, to an update of the local

store via the saveLocalData method, which records any changes to the parameters

of the current selection. Second, the GUI is updated to show the parameters of the

newly selected AU (from the local store) via the showLocalData method. Upon

selecting multiple AUs, the index of the AU to save, versus the index of the AU to

display, became inconsistent. This propagated to, and corrupted, the local store of

parameter values for the previously selected AU.

Fix

Upon selecting a new AU in the table of AUs, the save and display operations were

coordinated from within a listener attached to the table model. For improved clarity,

the listener now calls a separate method, updateUnitSelection (in keeping with a

similar approach in evs.gui.windows.VerificationA.java). The new method uses the

anchor selection index to determine the currently selected AU and properly

coordinates the save and display states within a multi-unit selection.

Notes

Tested the updates by adding and deleting AUs and by experimenting with the

selection and reselection of AUs, including the selection of multiple AUs in sequence

and separated by unselected AUs. In all cases, the GUI was updated properly and

the local store of parameters remained consistent with the display state.

Fix: Failure to consistently remove invalid results from the Output window [BUG]

Description

Verification results are displayed in the Output window of the EVS GUI. Upon

changing one or more parameter values that invalidate these results, the results

should be removed from the Output window. There should be no requirement to save

any changes to the parameter values in order to trigger the removal of invalid results

from the Output window. In practice, however, existing results were only updated

(and, therefore, removed, when required) upon saving changes. Thus, unsaved

7

changes were not immediately propagated to the Output window. This led to an

inconsistency between the updated parameter values and the previously computed

verification results, still available in the Output window.

Cause

Several dialogs within the EVS allow for changes to parameter values that may

invalidate earlier verification results. These include the

evs.gui.windows.MoreVerificationWindowDialog.java and the

evs.gui.windows.MoreInputDialog.java. In both cases, the parameter values are

updated upon closing the dialog. However, these changes were not propagated to

the evs.gui.windows.OutputA.java.

Fix

Revised the saveData method of MoreVerificationWindowDialog.java and

evs.gui.windows.OutputA.java to call the updateLocalData method of OutputA.java,

in order to propagate any changes in parameter values to the Output window.

Notes

Tested the fix by, firstly, conducting verification (in order to generate verification

results in the Output window) and, secondly, by changing various parameter values

that should invalidate (remove) the previously computed results. In all cases, the

earlier results were removed, once the changes were confirmed (i.e. once the dialogs

were closed).

Fix: Run selected Verification Units (VUs) [ENHANCE]

Description

The second window of the Verification stage allowed for the execution of a single VU

(“Run” button), namely the VU highlighted in the first window of the Verification stage,

or all VUs in the current project (“Run all” button). However, it did not allow for the

execution of more than one VU in a multi-unit selection.

Cause

The inability to execute a selection of VUs by highlighting multiple VUs in the first

window of the Verification stage and clicking “Run” in the second window of the

Verification stage.

8

Fix

Updated the runVerification method in evs.gui.windows.VerificationB.java to run all

VUs highlighted in the first window of the Verification stage, and not simply the first

unit in a multi-unit selection.

Notes

Tested the updates by executing different combinations of unit selections, including a

single VU, multiple VUs and all VUs. The outputs were correct in all cases.

Fix: Run selected Aggregation Units (AUs) [ENHANCE]

Description

The first window of the Aggregation stage allowed for the execution of all AUs using

the “Run” button. This behavior was inconsistent with the Verification stage, in which

the “Run” button executes only selected VUs and the “Run all” button executes all

VUs. Furthermore, it did not allow for the execution of selected AUs.

Cause

The inability to execute selected AUs by highlighting multiple AUs in the first window

of the Aggregation stage. Separately, the inability to execute all AUs, regardless of

the AUs selected.

Fix

Updated the runAggregation method in evs.gui.windows.AggregationA.java to run all

AUs highlighted in the first window of the Aggregation stage. Added a “Run all”

button to allow for the execution of all AUs (regardless of the AUs selected).

Notes

Tested the updates by executing different combinations of unit selections, including a

single AU, multiple AUs and all AUs, as well as the option to run all AUs, regardless

of selection. The outputs were correct in all cases.

Fix: Write verification pairs whose observations match the no data value [ENHANCE]

Description

When writing verification pairs, including both unconditional and conditional pairs,

those (invalid) pairs whose observations correspond to the “no-data” (missing) value

were omitted from the output file(s). This typically provides only a minimal saving in

storage space and, more importantly, fails to preserve the original data structure. For

9

example, it is impossible to distinguish between verification pairs whose

corresponding forecast or observation is absent in the original inputs versus pairs for

which an observed value is present, but corresponds to the no-data value.

Preserving the original data structure (i.e. absent vs. present with no data) is useful

for quality controlling the verification pairs.

Cause

The inability to distinguish between verification pairs whose inputs are absent in the

original data sources and pairs for which one or both inputs corresponds to the

missing value.

Fix

Updated the constructors in evs.data.PairedData.java to preserve verification pairs

whose inputs correspond to the global “no data” value.

Notes

Tested the updates by writing unconditional and conditional verification pairs with a

mixture of inputs that were absent, missing (i.e. present and matched the no data

value), and non-missing.

Fix: Navigate a table of units by using the up/down arrow keys [ENHANCE]

Description

The first window of the Verification stage shows a table of VUs within the active

project, while the first window of the Aggregation stage displays a table of AUs. In

both cases, the highlighted row(s) could not be changed with the up/down arrows

keys.

Cause

Upon selecting a VU within the first window of the Verification stage (or an AU within

the first window of the Aggregation stage), the table of units did not receive focus.

Thus, navigation using the up/down arrow keys was blocked. Furthermore, the

selection listener associated with each table was unable to handle an event

originating from the up or down arrow keys.

Fix

Updated the table of VUs in evs.gui.windows.VerificationA.java and the table of AUs

in evs.gui.windows.AggregationA.java to receive focus on request. Updated the list

selection listener associated with each table to refresh the display only when the

10

selection event has finished adjusting. Previously, the display was refreshed only

when the selection event was adjusting, and the up/down arrow keys failed to trigger

this adjustment.

Notes

Tested the updates by navigating the tables with a mouse and by using the arrow

keys. Selections were allowed in both cases, and the displays were updated, as

expected.

Fix: Improve temporal aggregation of time-series with missing data [ENHANCE]

Description

When aggregating a regular time-series that contains one or more missing values,

the aggregation should be performed “on cycle”; that is, by including the missing

values when determining the blocks to aggregate, rather than proceeding from the

first available block without missing values. The consequences of aggregating “off

cycle” are that some verification pairs will comprise “off cycle” forecast lead times. As

the verification statistics are computed by pooling verification pairs with common

forecast lead times, the statistics corresponding to “off-cycle” pairs generally

comprise only small sample sizes. In practice, any missing values should be

considered when determining the blocks for aggregation in a regular time-series,

otherwise the aggregation will proceed on a variable cycle (i.e. depending on the

distribution of missing values in each time-series).

Cause

By default, the aggregateTimeSeries method in evs.data.PairedDataUtilities.java

conducts aggregation from the first non-missing value for which a valid aggregation

block can be defined (a block whose values are all non-missing), regardless of

whether that aggregation block is “on cycle”. In this context, an aggregation block

comprising n verification pairs is “on cycle” if it begins xn timesteps after the first time

for which aggregation is requested, where x is an integer greater than zero. By

default, aggregation begins at the first non-missing time, but optionally (by user

request), an absolute time, comprising either a forecast lead time or a valid time in

UTC. Aggregation blocks that are “off cycle” (i.e. not “on cycle”) should be ignored.

Fix

Updated the aggregateTimeSeries method in evs.data.PairedDataUtilities.java by

abstracting out the logic for identifying aggregation blocks into a new method,

11

getBlocksForAggregation. The new method identifies aggregation blocks that are “on

cycle” and returns the first and last indices of these blocks for input to the updated

aggregateTimeSeries method.

Notes

Tested the updates against synthetic time-series with different combinations of

missing elements, as well as time-series with no missing elements.

Fix: Allow for verification by forecast threshold [ENHANCE]

Description

The EVS allows for verification by observed threshold, including real-valued

thresholds and climatological probabilities whose corresponding real values are

derived from a climatological probability distribution. To date, the EVS has not

supported verification by forecast amount, whether for real-valued thresholds or

probabilities derived from a forecast climatological distribution, except for those

discrete probability metrics, such as the Brier Score, where the threshold defines a

discrete event (i.e. for all data).

Cause

The inability of the EVS to define real-valued thresholds for conditioning by forecast

amount, as well as observed amount, including real-valued forecast amounts and

forecast probabilities whose corresponding real values are derived from a

climatological probability distribution (of forecast amounts). In order to condition on

forecast amount, an ensemble forecast must be expressed as a single value. Multiple

functions may be considered in deriving a single valued forecast from an ensemble

forecast (e.g. the ensemble mean), and several functions should be supported. Also,

as with the observed thresholds, the forecast thresholds could be real values (in the

units of the verification pairs) or forecast probabilities.

Fix

Implemented support for conducting verification by forecast amount, as well as

observed amount, including real values and forecast probabilities whose

corresponding real values are derived from a forecast climatological distribution.

Updated the parameter classes that store verification thresholds, including the

evs.metric.parameters.DoubleProcedureParameter.java and the

evs.metric.parameters.DoubleProcedureArrayParameter.java, adding an option to

specify a function from which to derive a single-valued forecast from the ensemble

12

members. The function is contained in a new class,

evs.metric.parameters.ForecastFunctionParameter. Specification of a non-null

function upon constructing the DoubleProcedureParameter.java or the

DoubleProcedureArrayParameter.java indicates that the threshold refers to a

forecast amount.

Updated the evs.data.fileio.ProjectFileIO.java to support I/O of the new function

within the EVS project file. Added a new class,

evs.gui.utilities.DisplayThresholdTypePar.java, to allow for the display and selection

of a threshold type in the Graphical User Interface (GUI). Four options are included,

namely: 1) observed climatological probability; 2) forecast climatological probability;

3) observed value; and 4) forecast value. When using forecast thresholds, the

forecast function is prescribed using the setForecastFunction method of the

DisplayThresholdTypePar.java. Updated the

evs.gui.windows.MoreParOptionsDialog.java to allow for the specification of the

threshold type and, where required, the forecast function (by selecting from options in

a drop-down box). Initially, the supported forecast functions include the ensemble

mean, median and mode. Finally, updated the private method, setDefaultMetrics, in

the VerificationB.java to set the default threshold type for each verification metric.

The default threshold remains an observed climatological probability.

Notes

Tested the new functionality for all four threshold types, including forecast

climatological probabilities derived from the mean, median and mode of the

ensemble members. The new thresholds were correctly addressed in the GUI,

written to (and read from) the EVS project file, and the forecast climatology was

derived correctly from the input pairs using the prescribed forecast function.

Fix: Allow joint-pairing of the numerator and denominator in a skill score [ENHANCE]

Description

For verification pairs that are used to compute skill measures, the numerator may

contain valid dates and times that are absent from the denominator and vice versa.

Although desired in some cases (e.g. if two model outputs are timed differently but

have the same support and period of record), this may complicate the interpretation

of skill measures, as the missing pairs may be systematically different in terms of the

chosen measure. Instead, restricting the measure to only those pairs that appear in

both datasets (the intersection of the numerator and denominator) should be allowed.

13

Cause

The inability to compute skill measures for the intersection of the paired inputs

(numerator and denominator) that comprise the measure.

Fix

Added a metric parameter,

evs.metric.parameters.CrossPairReferenceParameter.java, to flag whether the pairs

representing the numerator and denominator of a skill score should form an

intersection. Updated the constructors of the evs.metric.metrics.ROCScore.java, the

BrierSkillScore.java, and the MeanContRankProbSkillScore.java to accommodate

the new parameter, and updated the instantiations of those classes elsewhere. Also

updated the compute method of each metric to obtain the intersection of the paired

inputs. Added a new check-box to the evs.gui.windows.MoreParOptionsDialog.java

to input the new parameter value (“Use exactly the same pairs in the numerator and

denominator”). Finally, updated the evs.data.fileio.ProjectFileIO.java to accommodate

the reading and writing of the new parameter value to the EVS project file. For the

purposes of backwards compatibility, an intersection is not computed by default.

Thus, EVS project files from earlier versions of the EVS will produce identical output

before and after the change.

Notes

Using a numerator and a denominator with (some) different pairs, toggled the new

parameter between computing an intersection and not computing an intersection and

compared the paired inputs to the verification metrics. The paired inputs were

consistent with the toggled value of the parameter. Also, checked for the correct

reading and writing of the parameter value to the EVS project file and for backwards

compatibility when using old EVS project files.

Fix: Abstracted utility methods from PairedData.java into a new class [ENHANCE]

Description

The evs.data.PairedData.java conducts pairing of forecast and observations and

makes the pairs accessible through its instance methods. However, the

evs.data.PairedData.java also contains a large number of (static) utility methods that

are better located within a utility class.

14

Cause

The mixture of instance and (static) utility methods in evs.data.PairedData.java,

which is an important class and should be minimally complex.

Fix

Abstracted all the static utility methods in evs.data.PairedData.java to a new class,

evs.data.PairedDataUtilities.java.

Notes

The outputs from the utility methods were compared for equivalence before and after

abstraction and were found to be identical.

Fix: Avoid redundant (repeated) calculations of a climatological CDF [ENHANCE]

Description

Verification metrics may be calculated for prescribed thresholds, which include real-

valued thresholds and probability thresholds whose real values are derived from a

climatological probability distribution (forecast and observed). The calculation of this

climatological probability distribution is (relatively) time consuming, as it involves

ordering many (typically thousands) of forecasts or observations. The type of

threshold (and whether the distribution is computed for all data or a subset based on

date and value conditions) is defined separately for each metric. For simplicity, the

calculation was, therefore, repeated for each metric, including for metrics that require

the same distribution. Instead, a climatological probability distribution (forecast or

observed) should be computed only once for each metric that requires the

distribution.

Cause

The failure to compute a required climatological probability distribution only once.

Each of the required climatological distributions (forecast or observed, conditional or

unconditional) should be cached for use by subsequent metrics.

Fix

Created a new method, getClimatologicalCDFs, in

evs.analysisunits.VerificationUnit.java, which returns the climatological CDF required

by each metric. Each climatological CDF is computed only once and cached (stored

by evs.metric.metrics.ThresholdmetricStore.java). Added a new compute method to

the ThresholdmetricStore.java, which takes a pre-computed climatological probability

15

distribution. Finally, updated the computeMetrics method of VerificationUnit.java,

which calls getClimatologicalCDFs and passes the cached CDF to the compute

method of each ThresholdmetricStore.java.

Notes

Compared the real-valued thresholds derived from various types of climatological

probability distribution before and after the changes.

Fix: Allow for the application of confidence intervals to all metrics [ENHANCE]

Description

For verification metrics that support the estimation of sampling uncertainties via

bootstrap resampling, the advanced options dialog in the second window of the

Verification stage allows for the identification of confidence intervals to estimate. In

general, common intervals are applied to all metrics for which bootstrap resampling is

supported, yet these intervals must be defined manually for each metric. After

defining the confidence intervals for one metric, it should be possible to copy these

intervals to all other metrics associated with the active VU (that support bootstrap

resampling).

Cause

The inability to apply confidence intervals for a selected metric to all other metrics

associated with the active VU.

Fix

Updated the advanced options dialog for defining confidence intervals,

evs.gui.windows.MoreParOptionsDialog.java, to add a “Do all” button. Updated the

evs.gui.windows.VerificationB.java to add a new method, setBootstrapPars, which

sets the bootstrap resampling intervals for all metrics associated with the current VU.

Upon activating the “Do all” button, a user receives a prompt for confirmation.

Following confirmation, the intervals are checked for validity and applied to all metrics

associated with the current VU that support bootstrap resampling. If the intervals are

invalid or confirmation is not received, the user is returned to the dialog, and the

intervals are not applied to other metrics. If the table of intervals is empty, and

confirmation is received, the confidence intervals associated other metrics in the

active VU are removed.

16

Notes

Tested the updates by copying valid intervals to all other metrics, attempting to copy

invalid intervals, and removing intervals from all other metrics.

Fix: Allow for the reading of verifying observations from multiple files [ENHANCE]

Description

While forecasts may be read from one or more files, observations must be contained

within a single file. In practice, observations may be contained across several files;

for example, observations from a large number of gauging stations may be combined

into a single file for each valid time over a prescribed period of record.

Cause

The inability to read verifying observations from multiple files, including a folder that

contains multiple files.

Fix

Updated the computeAndSetPairs method in evs.data.PairedDataUtilities.java to

support the reading of observations from multiple files. Updated the GUI class,

evs.gui.windows.VerificationA.java, to allow for the selection of multiple files or a

single folder from which to obtain the verifying observations, and revised the

instructions in the input dialog (from “File containing verifying observations” to “File(s)

of folder containing observations”). Finally, updated evs.data.fileio.ProjectFileIO to

support the reading and writing of paths for multiple observed files to the EVS project

file.

Notes

Tested the updates for multiple combinations of input files, including a single file,

multiple files, and a folder containing multiple files.

Fix: Allow for the production of a cumulative rank histogram [ENHANCE]

Description

The verification rank histogram shows the number of observations (or fraction of

observations) that fall between any two ranked ensemble members, where a uniform

rank histogram implies that the ensemble forecasts are reliable. In keeping with other

reliability metrics, such as the quantile-quantile plot and the reliability diagram, it is

sometimes preferred to view the rank histogram in a cumulative form, where the

diagonal (i.e. cumulative uniformity) is the benchmark.

17

Cause

The inability to accumulate the counts (or fraction) of observations that fall below

each (ranked) ensemble member.

Fix

Implemented a new parameter, evs.metric.parameters.RankHistCumParameter.java

to record the status of the rank histogram as ordinary (the default) or cumulative.

Updated the constructors for the evs.metric.metrics.RankHistogram.java to require a

RankHistCumParameter.java. Updated the compute method of the

RankHistogram.java to accumulate counts when required by the

RankHistCumParameter.java. Modified the generateProducts method of the

evs.gui.windows.ProductGeneratorDialog.java and the getDefaultChart method of the

evs.products.plots.defaults.ChartFactory.java, which is called by generateProducts to

obtain a default plot format. Updated the default plot format,

evs.products.plots.defaults.RankHistogramPlot.java, to show cumulative counts

when required. The default format includes a diagonal line to illustrate perfectly

reliability.

Notes

Tested the rank histogram in its original and cumulative forms, both with raw sample

counts and fractions. All plots were produced as expected.

18

2.0 Changes from EVS 5.4 to EVS 5.5

Fix: Empty context menu displayed in the EVS file choosers [BUG]

Description

The context menu (right click) in the EVSFileChooser.java displayed an empty popup

menu.

Cause

This originates from a bug in the Alloy Look and Feel (the default EVS Look and

Feel) when attempting to show the context menu in the parent class of

EVSFileChooser.java (javax.swing.JFileChooser.java).

Fix

Updated the EVSFileChooser.java to hide the empty context menu by setting a null

menu in the superclass, JFileChooser.java, upon constructing the

EVSFileChooser.java.

Notes

Tested the updated EVSFileChooser.java by attempting to activate the context menu

(right click). The context menu was not shown, as expected.

Fix: Failure to propagate reference forecasts on adding or copying a VU [BUG]

Description

Upon adding or copying a Verification Unit (VU) in VerificationA.java, the new VU

was not included in the list of reference forecasts available for existing VUs in

VerificationB.java. The reference forecasts associated with skill metrics in

VerificationB.java should include all VUs, whether from saved VUs or recently added

or copied VUs.

Cause

The failure to propagate local changes in VerificationA.java to VerificationB.java.

Updates were only propagated to VerificationB.java upon saving, where the

updateUnitSelection method of VerificationA.java calls

VerificationB.updateLocalData. However, local changes in VerificationA do not trigger

VerificationB.updateLocalData, and are not, therefore, reflected in VerificationB.java.

In particular, when adding or copying VUs in VerificationA.java, these VUs do not

19

appear in the list of potential reference forecasts for other VUs until the EVS project

is saved.

Fix

Extended the VerificationB.updateLocalData method to coordinate the input VU as a

reference forecast for other VUs. Added a call to VerificationB.updateLocalData in

VerificationA.addDefaultUnit (to propagate the changes when adding a VU) and

VerificationA.copySelectedUnit (to propagate the changes when copying a VU).

Notes

Examined the list of reference forecasts associated with skill metrics in

VerificationB.java. Upon adding and copying VUs in VerificationA.java (with and

without saving these changes), the local changes were correctly propagated to

VerificationB.java.

Fix: Setting advanced value conditions before aggregation parameters [BUG]

Description

Upon attempting to save both advanced aggregation parameters and advanced

value conditions in the MoreVerificationWindowDialog.java, an exception was thrown,

indicating that the aggregation parameters could not be saved. As the value

conditions apply to aggregated quantities, the aggregation parameters must be set

before the value conditions.

Cause

The saveData method in MoreVerificationWindowDialog.java attempted to save the

value conditions before the aggregation parameters. Consequently, the

setResolution method in VerificationUnit.java threw an exception, indicating that the

verification resolution could not be set until the value conditions were removed.

Fix

Updated the saveData method in MoreVerificationWindowDialog.java to set the

aggregation parameters before any date or value conditions.

Notes

Tested the MoreVerificationWindowDialog.java by adding aggregation conditions and

value conditions in different combinations. No exceptions were thrown when saving

these parameters.

20

Fix: Failure to preserve local data on metrics when copying VUs [BUG]

Description

Upon copying a Verification Unit (VU) in the first window of the Verification stage, the

local parameters stored in VerificationA.java and VerificationB.java should be copied

from the source VU to the new VU. In practice, only those local parameters stored in

VerificationA.java were copied to the new VU. Thus, any local parameters stored in

VerificationB.java were not preserved in the copied VU (unless they matched the

saved parameters). The desired behavior is to preserve all local data entered in the

GUI upon saving or copying a VU.

Cause

The failure to associate any local parameters from VerificationB.java with the copied

VU. Specifically, the copySelectedUnit method of VerificationA.java failed to request

a deep copy of the local parameters associated with the source VU in

VerificationB.java and store them with the copied VU.

Fix

Updated VerificationB.java to add a new method, copyLocalData, which deep copies

the local data associated with a source VU and assigns it to a copied VU. This

required several additional methods to support the deep copying of local data in

VerificationB.java, notably two new methods in EVSUtilities.java for copying primitive

arrays (isPrimitiveArray and copyPrimitiveArray) and a deepCopy method in

DisplayScoreDecompPar.java. Updated copySelectedUnit in VerificationA.java to call

VerificationB.copyLocalData, which copies the verification metrics in the local store

for the source VU and associates them with the copied VU.

Notes

Tested the mechanism to copy local parameters in VerificationB.java and associate

them with a copied VU, including for a source VU with saved metrics and for a source

VU without saved metrics. In both cases, the local parameters in VerificationB.java

were preserved in the copied VU.

Fix: Errors displayed from modal dialogs may disappear behind those dialogs [BUG]

Description

Error messages generated from within modal dialogs and displayed by the

ExceptionHandler.java were occasionally blocked by the modal dialog and became

21

hidden, freezing the GUI until the error message was unblocked (e.g. by cycling

through open windows).

Cause

The failure to associate an error message with a parent dialog when calling the

displayException method of ExceptionHandler.java. When the parent dialog is modal,

the error message may be blocked by the modal dialog.

Fix

Updated all calls to the displayException method in ExceptionHandler.java to set the

parent dialog for error messages, including those generated from within a modal

dialog, such as MoreInputDialog.java

Notes

Tested the display of errors generated from within modal dialogs and displayed

through the ExceptionHandler.java. The error messages were correctly associated

with the parent dialog and no blocking was observed.

Fix: Failure to reset unconditional list of items in SearcheableComboBox [BUG]

Description

Once a single item has been identified and selected using the

SearcheableComboBox.java, the original (unconditional) list of items should appear

on starting a new search. In practice, the last conditional (searched) list appeared.

Cause

The failure to update the original (unconditional) list in SearcheableComboBox.java

once a single item has been identified and selected. Specifically, the setSelectedItem

method should delete the conditional list and set the active list of items to the

unconditional list.

Fix

Overrode the setSelectedItem method of the superclass, JComboBox.java, and

deleted the last conditional list, replacing the active list with the unconditional list of

items.

Notes

Conducted various searches with the SearcheableComboBox.java, selecting one

item from a conditional list and then starting a new search. Upon starting a new

22

search, the active list was returned to the unconditional list, as required. All other

expected behaviors were retained.

Fix: Failure to confirm partial entries in advanced options table upon saving [BUG]

Description

When entering parameter values in tables throughout the EVS, the default behavior

is to accept partial entries upon saving (i.e. entries for which the cell editor remains

open). For the table of paired options under the advanced parameter dialog,

MoreInputDialog.java, the table cell editor remained open upon closing the dialog.

Consequently, any partial entries were not confirmed and saved.

Cause

Upon closing the MoreInputDialog.java, the table cell editor for the advanced table of

pairing options was not properly closed by confirming all partial entries.

Fix

Updated the saveData method of MoreInputDialog.java to close the table cell editor

for the table of advanced options by calling

javax.swing.table.TableCellEditor.stopCellEditing.

Notes

Tested the MoreInputDialog.java by leaving several entries open in the table of

advanced pairing options. Upon closing the dialog, the partial entries were accepted

and the table cell editor closed, as expected.

Fix: Failure to recompute climatological thresholds in an Aggregation Unit [BUG]

Description

Upon changing one or more Verification Units (VUs) within an Aggregation Unit (AU)

and saving the EVS project file, any further attempt to re-run the AU would fail if the

component VUs comprised climatological probability thresholds.

Cause

When executing a VU, the real values associated with climatological probability

thresholds are computed from the verifying observations and stored temporarily

within those thresholds (DoubleProcedureParameter.java). Upon saving the EVS

project file, these thresholds (and hence the real values) are overwritten. This was

not properly factored into the spatial aggregation of VUs within an AU. Specifically,

23

the computeMetricsByAveraging method of the AggregationUnit.java failed to

recompute VUs for which existing results were available. This generated a run-time

exception from the aggregate method of the DoubleProcedureParameter.java,

indicating that real-valued thresholds were missing for one or more of the component

VUs.

Fix

Updated the computeMetricsByAveraging method of AggregationUnit.java to

consistently recompute VUs, including those VUs for which verification results are

available.

Notes

For an EVS project file containing an AU, reproduced the exception conditions by: 1)

executing the AU; 2) modifying one of the component VUs in the AU and saving the

EVS project; and 3) re-running the AU. The AU ran successfully on both occasions.

Fix: Loss of saved data when swapping identifiers between Verification Units [BUG]

Description

When renaming multiple Verification Units (VUs) simultaneously, all of the verification

metrics and parameter values associated with the renamed VUs were lost.

Specifically, they were lost for those VUs whose identifiers were swapped.

Cause

When two or more VUs were renamed simultaneously, the synchonizeVUNames

method of Verification_B.java failed to re-assign the locally saved information in

Verification_B.java (on verification metrics and associated parameter values) to each

of the renamed VUs.

Fix

Updated the synchonizeVUNames method in Verification_B.java to correctly re-

assign all locally saved parameters to the renamed VUs.

Notes

Tested the fix by renaming multiple VUs simultaneously; checked the assigned

verification metrics and parameter values for the renamed VUs, which were all

correct.

24

Fix: Allow for reading of tarred/zipped archives of ASCII forecast files [ENHANCE]

Description

In order to preserve disk space, forecast files in PI-XML and EVS ASCII formats may

be tarred and compressed. Allowing the EVS to read these compressed archives

directly would minimize storage space and avoid any additional administration of the

files for verification purposes (i.e. untarring and unzipping temporarily).

Cause

The inability to read forecast files in an ASCII format (specifically PI-XML and EVS

ASCII files) from a compressed archive.

Fix

Extended PairedDataSource.java to support the reading of forecast archives in a

tarred and gzipped format. Separated the reading of forecast files into two methods,

processForecastFile and processForecastArchive, where the latter processes tarred

and gzipped archives. Extended ASCIIFileIO.java and PublishedInterfaceXMLIO.java

to read forecasts directly from a java.io.BufferedReader.java. Implemented

BufferedArchiveReader.java, which extends java.io.BufferedReader, and overrides

the close method to remain open across a sequence of entries in a forecast archive.

The BufferedArchiveReader.java is closed upon request, once all entries in a

forecast archive have been processed or an exception has been thrown. Updated the

computeAndSetPairs method of PairedDataSource.java to distinguish between a

single forecast file and a forecast archive, calling the appropriate reader in each

case.

Notes

Tested file reading of individual forecast files in PI-XML and ASCII formats and tarred

and gzipped archives of PI-XML and ASCII files. The forecasts were processed

correctly in all cases.

Fix: Added an ensemble quantile-quantile diagram [ENHANCE]

Description

Added a quantile-quantile diagram to the EVS. The new metric forms an average of

the order statistics of the individual ensemble members and compares them to the

corresponding order statistics of the observations. The metric is currently only

accessible via the EVS project file and has not been added to the GUI.

25

Cause

Lack of support for evaluating climatological biases in ensemble forecasts with a

quantile-quantile diagram.

Fix

Created a new class that generates the metric results, EnsembleQQDiagram.java,

and a default class to plot the results (QQPlot.java). Updated the Chartfactory.java to

handle the results from the EnsembleQQDiagram.java using the QQPlot.java. The

new metric is configured through the EVS project file and is not currently available in

the GUI. The metric is configured within the <metrics> block of the EVS project file:

<metric>
 <name>EnsembleQQDiagram</name>

 <forecast_type_parameter>regular</forecast_type_parameter>
<unconditional_parameter>false</unconditional_parameter>

 <bootstrap_parameters>
 <technique>None</technique>
 </bootstrap_parameters>

</metric>

Notes

Configured the EnsembleQQDiagram.java for a test case and compared the results

to a benchmark.

Fix: Increment the Location identifier when adding or copying a VU [ENHANCE]

Description

Upon copying a Verification Unit (VU) in VerificationA.java, the new VU was named

by incrementing the Environmental variable identifier of the old VU. When a new VU

is added, the updateLocalData method in AggregationA.java refreshes the list of VUs

available for aggregation. An Aggregation Unit (AU) cannot be formed from VUs with

different Environmental variable identifiers. Thus, upon copying an existing VU, the

new VU failed to display in AggregationA.java until the Environmental variable

identifier was updated and the changes saved. Although expected behavior,

incrementing the Location identifier is preferred, as this would immediately propagate

the copied VU to AggregationA.java, without the need to update and save.

Cause

The copySelectedUnit method of VerificationA.java creates a new VU by

incrementing the Environmental variable identifier of the old VU. Until the

26

Environmental variable identifier is updated, and the changes saved, the new VU

cannot appear in the list of VUs available for aggregation in AggregationA.java.

Fix

Updated the copySelectedUnit method in VerificationA.java to increment the Location

identifier upon copying a VU. For consistency, also updated the addDefaultUnit

method of VerificationA.java to increment the Location identifier when adding a new

VU (although an empty VU cannot appear in AggregationA.java).

Notes

Upon adding and copying a VU, the Location identifier is now updated. A copied VU

immediately appears in the list of VUs available for aggregation in AggregationA.java.

Fix: Allow for filtering of forecast files within an archive [ENHANCE]

Description

When reading forecast files from an archive, such as a tarred and compressed

archive, all files are processed and interpreted as valid forecast files. In practice, the

archive may contain files that should not be interpreted as forecast files. Filtering

input files against a prescribed pattern (e.g. .xml) is already supported when reading

from a directory, but not from an archive.

Cause

The inability to read selected files within an archive by filtering the names of the files

against a prescribed pattern.

Fix

Implemented a new class, FileArchiveDataSource.java, to identify a file source that

comprises an archive. The FileArchiveDataSource.java extends the

FileDataSource.java and allows for the identification of a file filter to be applied within

the archive. Updated the PairedDataSource.java to support the reading of forecast

files from a FileArchiveDataSource.java. Also updated the MoreInputDialog.java to

allow for the identification of a filter string within the GUI (using the Other options tab

of the Additional options dialog) and updated the ProjectFileIO.java to allow for

reading and writing of the filter string to an EVS project file.

Notes

Tested the new filtering option by reading files from a forecast archive and

prescribing various filter patterns. The archive was filtered correctly and the filter was

27

edited and displayed successfully within the GUI, stored correctly in the EVS project

file, and retrieved correctly upon re-opening the EVS project file.

28

3.0 Changes from EVS 5.3 to EVS 5.4

Fix: Incorrect updating of local data in the GUI [BUG]

Description

Local data is saved in each window of the GUI upon entry for the active VU. When

selecting a metric in the second window of the Verification stage and updating the

local data for that metric, the updates were incorrectly applied to the same metric

across all VUs in the active project, rather than the active VU only.

Cause

The saveLocalData method of GUIInterface.java is implemented by VerificationB.java

and other windows in the GUI. Rather than obtaining the active VU from an input

variable, the saveLocalData method must call the getSelectedUnit method of

VerificationA.java. However, depending on the context in which saveLocalData is

called, updates may be required to a VU other than the active VU returned by the

getSelectedUnit method. For example, a ListSelectionListener is registered with the

table of VUs in VerificationA.java. Upon selecting a new VU, the updateUnitSelection

method of VerificationA.java calls the saveLocalData method of VerificationB.java.

This call is made only when the ChangeEvent indicates that the value is adjusting.

Under these conditions, the getSelectedUnit method returns the currently selected

VU, and not the previously selected VU for which the local data must be saved.

Rather than obtaining the appropriate VU indirectly, the saveLocalData method of

GUIInterface.java should obtain this VU as an input variable. Similarly, the

showLocalData method of GUIInterface.java should obtain the appropriate VU as an

input variable.

Fix

Updated the saveLocalData and showLocalData methods of the GUIInterface.java

and all implementing classes to include the VU for which any changes are required

as an input variable, avoiding the need to obtain this VU indirectly.

Notes

Upon selecting a metric in the second window of the Verification stage and updating

the local data for that metric, the updates are no longer applied to the corresponding

metric associated with other VUs in the active project.

29

Fix: Failure to conduct spatial aggregation for probability thresholds [BUG]

Description

When forming an AU by averaging the verification results across several VUs, the

verification results for a ThresholdMetric should be averaged together with the

verification thresholds. When computing the VUs and AUs together, both were

computed correctly. However, when separating these stages (i.e. computing the VUs

first and then computing the AU), an exception was thrown for each ThresholdMetric,

indicating that the verification thresholds could not be aggregated.

Cause

The aggregate method of DoubleProcedureParameter.java computes an aggregate

verification threshold from a vector of input thresholds (instances of

DoubleProcedureParameter) using a specified aggregation function and

corresponding vector of weights (one per threshold). Alongside the threshold value,

each input threshold comprises two logical parameters, one indicating whether the

thresholds are probabilities and another indicating whether the thresholds are “main”

thresholds (and should be included in the plotting). These parameters should be

maintained in the aggregated output. In practice, however, they were not maintained.

This resulted in a conflict in the aggregated DoubleProcedureParameter and,

ultimately, an exception upon attempting to aggregate the input thresholds.

Fix

Updated the aggregate method of DoubleProcedureParameter.java to ensure that

the aggregated verification thresholds comprise the same logical parameters as the

input thresholds.

Notes

Tested the updates by conducting aggregation both prior to and after forming the

VUs. In both cases, the aggregation was conducted without exceptions.

Fix: Failure to delete verification pairs when changing advanced parameters [BUG]

Description

Upon executing a VU for the first time, the verification pairs are computed and stored

for future runs. In some cases, a parameter is changed that implies the verification

pairs should be deleted and recomputed. However, several advanced parameter

30

options that should trigger existing pairs to be deleted and recomputed, failed to

trigger this update.

Cause

Upon changing a parameter that implies the existing verification pairs should be

deleted and recomputed, the appropriate setter method in VerificationUnit.java

determines whether the input parameter differs from the existing parameter. If a

difference is identified, the old pairs are deleted. However, several of the setter

methods for advanced parameters failed to check for equality before assigning the

parameters, instead making the check afterwards (when the parameters are

necessarily equal). The check for equality was conducted incorrectly by multiple

setter methods in VerificationUnit.java, namely: setFcstAggStartTimeUTC,

setObsAggStartTimeUTC, and setFcstAggStartLeadHour. These setter methods

correspond to the advanced parameters in 2b. Identify input data sources > More >

Pairing options, namely: “Set time for aggregation of observations [hours, UTC]”, “Set

time for aggregation of forecasts [hours, UTC]”, and “First lead time for aggregation

of forecasts [hours]”, respectively. In addition, the checks for equality were conducted

incorrectly by setPairedAggStartTimeUTC, setPairedAggStartLeadHour. These

methods correspond to the advanced parameters in 2c. Set time parameters > More

> Aggregation, namely: “Aggregation start hour UTC [0, 23]”, and “Aggregation start

lead hour”, respectively. When editing any of these parameters for an EVS project file

with existing verification pairs, these changes failed to delete the existing pairs.

Fix

Updated the following setter methods of VerificationUnit.java to ensure that the input

parameter is checked for equality with the existing parameter before assigning the

input parameter to the existing parameter: setPairedAggStartTimeUTC,

setFcstAggStartTimeUTC, setObsAggStartTimeUTC, setPairedAggStartLeadHour,

and setFcstAggStartLeadHour.

Notes

Tested each of the updated methods by assigning parameter values that differed

from the existing values. In each case, an update was triggered and the existing pairs

deleted, as expected.

31

Fix: Inefficient saving of local data in the GUI [BUG]

Description

The second window of the Verification stage saves local data upon entry in the EVS

GUI. The local data is only saved to an EVS project file upon an explicit request to

save the EVS project. A listener is registered to the threshold table for each

verification metric, which saves any edits to the thresholds in the local data store.

Upon editing a given cell in the table, the listener was triggered for every cell in the

table, rather than once for the edited cell.

Cause

The showLocalData method of VerificationB.java registered a CellEditorListener for

each cell in the threshold table for a given verification metric. Upon editing a table

cell, the listener fired a ChangeEvent for every cell in the table, which called the

saveLocalData method of VerificationB.java. Rather than associating a listener with

each cell, a listener should be associated with each column in the threshold table.

Fix

Updated the showLocalData method of VerificationB.java to avoid registering a

CellEditorListener with each cell in the threshold table. Updated the setTables

method of VerificationB.java to register a CellEditorListener for each column class in

the threshold table, which calls the saveLocalData method once for each edit.

Notes

Added a print statement to the saveLocalData method of VerificationB.java to identify

the number of calls to this method before and after the updates. After the updates, a

single edit resulted in a single call to saveLocalData, which is the expected behavior.

Fix: New options to sub-sample verification pairs for sensitivity testing [ENHANCE]

Description

Verification results are sensitive to the paired forecasts and observations available.

Forecasts and observations from consecutive lead times and from adjacent locations

are typically related to each other or “statistically dependent”. If the verification pairs

contain shared information, the effective sample size is smaller than the nominal

sample size. Particularly when the nominal sample size is small (e.g. extreme

events), the verification results may be over-sensitive to a small number of observed

events that are shared across multiple forecast issue times. In order to explore these

32

sensitivities, the EVS was enhanced to allow for sub-sampling of verification pairs at

prescribed intervals; that is, thinning of data to include only those forecast issue

times that meet prescribed constraints.

Cause

The inability to subsample pairs at a prescribed start index and frequency, in order to

explore the sensitivity of the verification results to the sample data available and,

specifically, to shared information across multiple dates.

Fix

Updated PairedData.java to include a new method, getThinnedPairs, which takes a

paired dataset and returns a thinned dataset, comprising a sub-sample of the original

pairs. The pairs are sub-sampled by forecast issue time with a prescribed, zero-

based, start index and an interval between forecasts (i.e. sample every nth forecast).

Updated VerificationUnit.java to set, store, and return the start index and frequency,

and to thin the paired data associated with a Verification Unit upon request. The

thinning is applied to the conditional pairs (i.e. the subset of pairs remaining after all

other conditions on dates and variable values have been applied). Finally, updated

ProjectFileIO.java to read and write the thinning parameters, including the start index

and frequency. These parameters are included in a <thinning> tag within the

<verification_window> of the EVS project file. For example:

<thinning>

 <start_index>0</start_index>

 <frequency>3</frequency>

</thinning>

Notes

Tested the new functionality by specifying various combinations of start index and

frequency and validating the resulting selection of conditional pairs. The pairs were

subsampled correctly and the thinning parameter were written to the EVS project file

and read correctly.

33

4.0 Changes from EVS 5.2 to EVS 5.3

Fix: Incorrect labeling of the range axis in the plot of relative mean error [BUG]

Description

The range axis in the default plot of the relative mean error (RME) was expressed in

real units (i.e. where real units are defined in the EVS project file). However, the RME

measures the fractional bias of the ensemble mean forecast and is, therefore,

dimensionless.

Cause

The RMEPlot.java incorrectly implemented RealValuedPlot.java, which requires all

implementing classes to add the real units (if available) to the range axis.

Fix

Removed the incorrect inheritance of RealValuedPlot.java from RMEPlot.java and

removed the corresponding implemented method, setRealUnits.

Notes

Ran the benchmark tests and verified that the plots of RME no longer label the range

axis with real-valued units.

Fix: Failure to set forecast file filter on loading an EVS project file [BUG]

Description

The forecast file filter is an advanced option under 2b. Identify input data sources >

More > Other options, which allows a directory to be searched for only those forecast

files that match the specified filter text (e.g. .xml). When loading a new EVS project

file, the filter text was not always synchronized with the corresponding local

parameter in the GUI. This led to a conflicted state whereby the stored parameter

was removed, which further triggered the verification pairs to be removed (which are

invalidated by a change in this parameter). It also led to a run failure or an incorrect

run, as the forecast directory was no longer screened with the specified filter.

Cause

When loading a new EVS project file for which a filter was defined, the parameter

was not immediately synchronized with the local parameter in the GUI. Rather, it was

only synchronized when opening the Other options dialog. Thus, unless the Other

options dialog was opened between loading a project file and executing a run, a

34

conflicted state arose, whereby the local parameter remained null. Since an

automatic save operation is triggered before each run (which sets the saved

parameters with the local parameters), the resulting (non-null) forecast file filter was

removed prior to the run. This resulted in a failed or invalid run.

Fix

Upon loading an EVS project file, the updateLocalData method of VerificationA.java

is used to synchronize the local store of parameters in the GUI with those in the EVS

project file. This method now calls the corresponding updateLocalData method of the

MoreInputDialog.java, which stores the local parameter for the forecast file filter.

Notes

Repeated the failure scenario whereby a forecast file filter was previously removed

upon loading an EVS project file. The filter is no longer removed.

Fix: Failure to remove non-default pairing options once set in GUI [BUG]

Description

The pairing options window of the additional options dialog (MoreInputDialog.java)

contains several options for pairing forecasts and observations. The dialog is

accessible via the “More” button from 2b. Identify input data sources in the first

window of the GUI. Several of these options do not have default values (i.e. they are

empty). Upon setting a non-default value, it was subsequently impossible to remove

that value by setting an empty string (i.e. the empty string was not accepted),

although other non-default values (i.e. non-empty strings) were accepted.

Cause

Upon finding an empty string for any of the pairing options that allow empty values,

the appropriate methods in VerificationUnit.java were not called to remove the

existing values of those parameters.

Fix

Upon encountering an empty string in MoreInputDialog.java for any parameters that

allow an empty string, the appropriate methods are now called in VerificationUnit.java

to remove the existing parameter value. For convenience, additional methods were

defined in VerificationUnit.java to delete an existing parameter value and set the

default (empty) value.

35

Notes

Repeated the scenario whereby empty strings were not allowed once a non-empty

string had been set. Empty strings are now accepted and the parameters returned to

their default (empty) status upon request.

Fix: Automatic threshold entries retained in GUI when closing a project [BUG]

Description

When closing an EVS project (i.e. closing a project, creating a new project or opening

a new project), the entries for automatic threshold generation in the second window

of the Verification stage were retained in the GUI. The desired behavior is to clear all

parameter entries, including the entries for automatic threshold generation, when

closing a project.

Cause

The clearDisplay method of VerificationB.java failed to clear the entries for automatic

threshold generation when requested.

Fix

Updated the clearDisplay method of VerificationB.java to clear the entries for

automatic threshold generation when requested.

Notes

Repeated the scenario whereby automatic thresholds entries were retained on

closing a project. The entries are no longer retained.

Fix: Default parameter inputs remain visible when no metric is selected [BUG]

Description

When selecting a verification metric in the second window of the Verification stage

and opening a new project, the metric selection is returned to default, i.e. no metric

selected (expected behavior). However, the default parameter inputs for the

previously selected metric remain visible and disabled. Since the default parameter

inputs vary with metric, the expected behavior is to show no inputs when no metric is

selected.

Cause

In the absence of a metric being selected, the setParBoxEnabledState method of

VerificationB.java failed to hide the default parameter inputs.

36

Fix

Updated the setParBoxEnabledState method of VerificationB.java to hide the default

parameter inputs when no metric is selected.

Notes

Repeated the scenario whereby the default parameter inputs were disabled but

remained visible when no metric was selected. The default parameter inputs are now

hidden, as expected.

Fix: Local parameter values retained on closing/opening/creating a project [BUG]

Description

When loading a new project file, not all of the local data from a previously opened

project were cleared from the second window of the Verification stage. For example,

after manually removing a metric from a loaded EVS project file and re-loading the

project, the metric was retained in the GUI, when the proper behavior should be to

clear all local data and display the newly opened project (and thus not display the

eliminated metric).

Cause

A failure to consistently clear all local data (from all windows) when calling the

newProject, closeProject and openProject methods of EVSMainWindow.java.

Fix

Created a new method, clearAllLocalData, in EVSMainWindow.java to clear the local

data from all windows on request. Updated the newProject, closeProject and

openProject methods of EVSMainWindow.java to call clearAllLocalData.

Notes

Repeated the scenario whereby local data were retained upon closing a project,

creating a new project or opening an existing project. The local data are no longer

retained.

Fix: Inconsistent application of date/value conditions to climatology [BUG]

Description

When determining real-valued thresholds from climatological probabilities, there are

two options for selecting climatological observations, namely the paired observations

and the original (unpaired) observations. In the EVS GUI (2b. Identify input data

37

sources > More > Other options), any date and value conditions may be applied

separately to the climatological observations (versus the verification pairs). However,

when electing to use the paired observations to determine climate thresholds, any

separate control on the use of date or value conditions was ignored, i.e. any date or

value conditions were applied automatically to the climatological observations unless

the option to use the original (unpaired) observations was also selected.

Cause

A failure to separate the application of date and value conditions from the source of

data used to determine the climate thresholds. Specifically, the getConditionedPairs

method of VerificationUnit.java ignored any request to apply or not apply date and

value conditions to the climatological observations unless those observations

comprised the original (unpaired) observations.

Fix

Updated the getConditionedPairs method of VerificationUnit.java to apply or not

apply date and value conditions independently of the data source to which those

conditions apply.

Notes

Repeated the scenario whereby the choice to ignore date or value conditions in

determining climate thresholds was only applied when using the original (unpaired)

observations. It is now applied independently of the data source used to determine

the climate thresholds.

Fix: Plot range incorrectly fixed across components of score decompositions [BUG]

Description

Graphical outputs from the EVS are grouped for plots that span multiple forecast lead

times and for plots that comprise score decompositions. In both cases, the range

axes of the grouped plots are fixed according to the overall minimum and maximum

values. However, while useful for viewing common plots across multiple forecast lead

times, this was not intended for score decompositions, where the score components

have different bounds and interpretations.

Cause

The failure to distinguish between groups of plots that comprise multiple forecast lead

times, whose range axes should be fixed across plots, versus groups of plots that

comprise score decompositions, whose range axes should not be fixed across plots.

38

Specifically, the generateProducts method of the ProductGenaratorDialog.java failed

to make this distinction, and fixed the range axes for both types of plot groupings.

Fix

Updated the generateProducts method of the ProductGenaratorDialog.java to fix the

range axes for plot groupings that comprise multiple forecast lead times and not for

groupings that comprise score decompositions.

Notes

Generated graphical outputs for both plot groupings (i.e. multiple forecast lead times

and score decompositions), and the range axes are no longer fixed for groupings that

comprise score decompositions.

Fix: Failure to re-load project file with null forecast data source [BUG]

Description

Upon saving an EVS project file with a null data source, the project file failed to re-

load.

Cause

The readVerificationUnit method of ProjectFileIO.java expected a non-null forecast

data source. Upon encountering a null data source, a NullPointerException was

thrown. This resulted in the failure to read an EVS project file with an empty forecast

data source, yet such a file could be created within the EVS.

Fix

Updated the readVerificationUnit method of ProjectFileIO.java to support the reading

of EVS project files with an empty forecast data source.

Notes

Attempted to read an EVS project file with an empty forecast data source. The file

was read correctly.

Fix: Failure to correctly apply combinations of date and value conditions [BUG]

Description

When defining conditions on variable value for a Verification Unit (VU) other than the

current VU, the value conditions were not applied correctly when date conditions

were also defined.

39

Cause

The getConditionedPairs method of VerificationUnit.java failed to correctly apply

combinations of date and value conditions when using value conditions for variables

other than the current VU. For example, when defining a combination of date and

value conditions for temperature, the value conditions were not applied correctly

when referencing secondary variables, such as precipitation. Specifically, the

getConditionedPairs method failed to apply the value conditions to the unconditional

pairs for the secondary variable (e.g. precipitation), instead applying these to the

conditional pairs. This was contrary to the design of getConditionedPairs, namely that

all conditions are collated and merged before being applied to the unconditional

pairs, i.e. the pairs are conditioned once rather than sequentially for each condition.

Fix

Updated the getConditionedPairs method of VerificationUnit.java to correctly apply

combinations of date and value conditions to the unconditional pairs.

Notes

Checked the conditional pairs following the application of combined date and value

conditions, including value conditions on secondary variables (e.g. precipitation when

verifying temperature), and the conditional pairs were constructed correctly.

Fix: Failure to consistently set/clear the multiplier for target attribute units [BUG]

Description

Converting between measurement units is achieved by specifying the existing units,

the target units and, for those unit conversions not recognized by the EVS, a

multiplier to arrive at the target units from the existing units (“Multiplier for target

units”). These inputs are available in the Additional options dialog of 2b. Identify input

data sources. For unit conversions that are recognized by the EVS (i.e. conversions

that appear in MeasurementUnitsChangeLibrary.java), the multiplier to arrive at the

target units is displayed in the Additional options dialog upon selecting the unit

conversion. However, the multiplier was not displayed or cleared consistently. For

example, it was only displayed in the Additional options dialog upon re-opening the

dialog, having previously defined the unit conversion. Also, an existing multiplier,

displayed in the Additional options dialog (“Multiplier for target units”), was not

automatically cleared when modifying an earlier unit conversion.

40

Cause

Inadequate logic for setting and clearing the “Multiplier for target units” in the

Additional options dialog of 2b. Identify input data sources. Specifically, the

setValueAt method of the ScaleTableModel.java failed to update the multiplier upon

selecting a unit conversion from the MeasurementUnitsChangeLibrary.java or clear

the multiplier when updating either the existing attribute units or the target units.

Fix

Updated the setValueAt method of ScaleTableModel.java to properly set and clear

the multiplier for target units when identifying or editing unit conversions.

Notes

Added, edited, and removed unit conversions between existing and target attribute

units. The multiplier for target units was updated or cleared, as appropriate.

Fix: Incorrect naming of conditional paired file [BUG]

Description

The conditional pairs were written to a file whose name was derived from the file

name assigned to the unconditional pairs, rather than the unique identifiers of the VU

to which those pairs applied. Consequently, when using a common source of

unconditional pairs across several VUs or several projects, the file name assigned to

the conditional pairs was not unique, and existing conditional pairs were overwritten.

Cause

When writing conditional pairs, the file name was derived from the name given to the

unconditional pairs. Thus, when manually editing the paired data source in an EVS

project file (e.g. to use common pairs across several projects), the conditional pairs

were written to a file whose name was a derivative of that file and not the identifiers

associated with the VU to which the conditional pairs applied. For the same reason,

when using a common source of unconditional pairs across several VUs or several

projects, the file name for the conditional pairs was no longer unique and could

overwrite existing conditional pairs. The file name was assigned by the writePairs

method of VerificationUnit.java, to which a fix was applied.

Fix

Added a new method getNameForPairedFile to VerificationUnit.java to return an

appropriate name for the paired file, based on the unique identifiers of the VU from

41

which the method is called. Updated the computeAndSetPairs method of

PairedDataSource.java, as well as the writePairs method of VerificationUnit.java, to

call getNameForPairedFile. Previously, the writePairs method used the file name of

the unconditional paired data source as the basis for the conditional pairs, rather than

using the (unique) combination of identifiers available for a given VU.

Notes

Manually edited the file data source for the unconditional pairs in an existing project

file. Upon writing the conditional pairs, the file name was derived from the unique

identifiers of the VU to which the unconditional pairs applied, and not the file name of

the unconditional pairs.

Fix: Incorrect handling of non-unique identifiers for new Verification Units [BUG]

Description

Each VU has a unique combination of identifiers. Upon changing the name of a

default VU to a combination of identifiers that already exists, an appropriate

exception is thrown. However, when changing several VUs simultaneously and

creating two or more non-unique identifiers among the new names, an unhandled

exception is thrown.

Cause

The saveData method of VerificationA.java compares the identifiers of existing VUs

with the proposed identifiers for new VUs. If any combination of identifiers is non-

unique, an exception is thrown. However, there were no checks to ensure that the

proposed identifiers were unique among the list of all proposed identifiers. Thus, if

several VUs were altered simultaneously, non-unique identifiers were possible. This

resulted in an unhandled exception (a NoSuchElementException), rather than a

handled exception and warning message.

Fix

Updated the saveDate method of VerificationA.java to ensure that all proposed

identifiers are unique, as well as ensuring that the proposed identifiers do not match

any existing identifiers that will remain following the updates.

Notes

Tested the exception handling following the updates. When changing several VUs

simultaneously and creating non-unique identifiers among the updated names, an

appropriate exception is now thrown.

42

Fix: Inconsistent return value from hasDateCondition in VerificationUnit.java [BUG]

Description

A date condition comprises a collection of individual conditions applied to the dates

associated with the verification pairs. When a date condition is defined for a given

VU, it may be modified to clear some or all of the individual conditions. When clearing

all conditions, an empty date condition remains. The hasDateCondition method of

VerificationUnit.java should only return true when a date condition exists and is not

empty. Previously, the method returned true when an empty date condition was

defined.

Cause

Inconsistent behavior of the hasDateCondition method of VerificationUnit.java when

an empty date condition is available for a given VU. Specifically, the method returned

true if an empty date condition was defined but returned false if no date condition

was defined. The desired behavior is to return true only if a date condition exists and

it is not empty.

Fix

Updated the hasDateCondition method of VerificationUnit.java to return true only

when a date condition has been defined and the date condition is not empty.

Notes

Tested the updated method. The method now returns true only when a date condition

has been defined and is not empty.

Fix: Failure to save local data in all windows upon changing the active VU [BUG]

Description

User inputs to the EVS GUI are initially saved as local data. Local data are retained

for display and are not validated or saved permanently. Following a request to save

an EVS project, the local data are validated and saved to a project file. User inputs

are required across multiple windows. When changing the selection of VUs in the first

window of the Verification stage, the local data should be saved across all windows

and re-displayed upon request (i.e. upon re-selecting a VU). However, the local data

was not consistently saved across all windows. Specifically, the selection of metrics

and their associated parameter values, as well as the configuration of Aggregation

43

Units (AUs), were not retained upon changing the active VU. This required a user to

explicitly save the current project before changing the active VU.

Cause

The failure to consistently store local data upon selecting a different VU in the first

window of the Verification stage. Specifically, the updateUnitSelection method of

VerificationA.java was incorrectly calling the updateLocalData method of

VerificationB.java and AggregationA.java (which updates the locally stored parameter

values with previously saved values), rather than calling saveLocalData.

Fix

Changed the updateUnitSelection method of VerificationA.java to call the

saveLocalData method of VerificationB.java and AggregationA.java before calling the

showLocalData method of those classes.

Notes

Tested the updated method. The local data was stored and re-displayed consistently

across all windows when changing the active VU.

Fix: Failure to consistently use all historical observations for climate thresholds [BUG]

Description

Climatological probabilities may be determined from all historical observations or only

from those observations associated with the verification pairs. Additionally, the

observations may be constrained by date and value conditions. In the GUI, the use of

unconditional observations is configured via 2b. Identify input data sources > More >

Other options > Use all observations (not just paired) to determine climate

thresholds. This option is applied correctly when computing verification metrics from

an existing paired dataset, but was not applied correctly when computing verification

metrics for the first time. Here, the unconditional observations were (incorrectly)

constrained by the start and end dates of the verification window.

Cause

The computeAndSetPairs method of PairedDataSource.java used unconditional

observations that were constrained by the start and end dates of the verification

window, rather than the full set of unconditional observations. In contrast, when re-

reading verification pairs, the getPairs method of VerificationUnit.java used the full

set of unconditional observations.

44

Fix

Updated the computeAndSetPairs method of PairedDataSource.java to associate the

full set of unconditional observations with the paired data upon initial construction. In

future, the unconditional observations may be stored directly in the paired data file.

Notes

Tested the updated method. The unconditional observations are now correctly

associated with the verification pairs upon construction.

Fix: Failure to synchronize an AU upon removing the additional ID from a VU [BUG]

Description

When changing the identifiers of a VU, these identifiers should be updated for all VUs

and AUs that depend on the renamed VU. For example, AUs that comprise a

renamed VU should be updated to use the renamed VU. However, when attempting

to remove the additional ID for a VU contained within an AU, an unhandled exception

was thrown and the AU was left in an inconsistent state.

Cause

The synchronizeVUNames method of AggregationA.java attempts to synchronize

any changes in VU identifiers for AUs that comprise the renamed VU. This method

correctly handled changes in the location ID (a required identifier) and in the

additional ID (an optional identifier), but failed to handle the removal of the additional

ID, for which no method was defined in VerificationUnit.java.

Fix

Updated VerificationUnit.java to include a new method, clearAdditionalID, which

removes the additional ID associated with a VU. Updated the synchronizeVUNames

method of AggregationA.java to handle the removal of an additional ID by calling the

clearAdditionalID method of VerificationUnit.java.

Notes

Tested the removal of an additional ID for a VU that was contained within an AU. The

AU was updated correctly to include the renamed VU (without the additional ID).

45

Fix: Incorrect metadata files generated for Aggregation Units (AUs) [BUG]

Description

The numerical outputs from the EVS comprise graphical outputs and numerical

outputs in XML format. Separate XML files are written for the verification results and

for metadata, which includes the verification thresholds and sample counts. When

writing the metadata for aggregation units, the thresholds and sample counts were

not correct. Specifically, they referred to the first VU in the spatial aggregation and

not the AU.

Cause

The aggregate method of Metric.java returns an aggregated metric from a series of

input metrics and associated aggregation weights. The aggregation of verification

results is handled by the aggregate method of MetricResult.java, which is called from

the aggregate method of Metric.java. However, subclasses of Metric.java, such as

ThresholdMetricStore.java, require aggregation of verification thresholds, as well as

verification results. Thus, the aggregation method of Metric.java must be overridden

by subclasses for which the aggregation of inputs involves more than simply the

aggregation of metric results.

Fix

Implemented an overriding method aggregate in ThresholdMetricStore.java, which

calls the superclass method to aggregate the metric results, and then aggregates the

verification thresholds associated with the ThresholdMetricStore.java, together with

the threshold parameter, DoubleProcedureArrayParameter.java. The verification

thresholds contained in the DoubleProcedureArrayParameter.java are used by

getThresholdMetadata method in ThresholdMetricStore.java to return the correct

metadata for the (aggregated) Metric.java.

Notes

Examined the metadata outputs for several aggregation cases. The metadata

contained the correct sample counts and thresholds for the aggregated results.

Fix: Failure to clear target attribute units when current units are absent [BUG]

Description

The original and target attribute units of the forecasts and observations are displayed

in the Additional options dialog, which is accessible through 2b. Identify input data

46

sources > More. Target attribute units can only be defined alongside existing attribute

units. However, the table entry allows for the target attribute units to be displayed

when the existing attribute units are undefined.

Cause

Failure to clear the target attribute units or prevent input of target attribute units until

the existing attribute units are defined. Specifically, the setValueAt method of the

ScaleTableModel.java accepts and displays target attribute units when the existing

attribute units are undefined.

Fix

Updated the setValueAt method of ScaleTableModel.java to only accept target

attribute units when the existing attribute units are defined and to clear the target

attribute units when the existing units are cleared.

Notes

Tested the table entries for the existing and target attribute units of the forecasts and

observations. The target attribute units are only displayed when the existing attribute

units are defined, otherwise the target units are cleared.

Fix: Failure to read forecast issue time from NetCDF forecast files [BUG]

Description

When processing NetCDF forecast files, the forecast lead times were not processed

correctly unless the first entry in the time-series was an analysis/issue time (T0). For

example, when the first entry comprised a forecast time, the lead time associated

with that forecast was assigned zero, because the first entry was assumed to contain

an analysis time.

Cause

The NetCDFEnsembleHandler.java overrides the setTimeInfo method of

EnsembleDataParserCallback.java, which sets the time information associated with

the forecast time-series. Forecast lead times were determined by subtracting the

forecast valid time associated with each entry from the valid time associated with the

first entry, which was assumed to contain the analysis/issue time. This assumption is

not appropriate, as NetCDF files are not required to contain an analysis time in the

first entry.

47

Fix

Updated the setTimeInfo method of the EnsembleDataParserCallback.java to accept

a forecast start time and updated the overridden method in

NetCDFEnsembleHandler.java to compute the forecast valid times relative to the

specified start time. Updated NetcdfUtils.java to include a static variable identifier,

FORECAST_T0=“analysis_time”, which is used to identify the forecast issue time in

the NetCDF file. Updated the SimpleEnsembleNetcdfDataReader.java to read the

issue time from a NetCDF forecast file and throw an exception if the variable

“analysis_time” cannot be located.

Notes

Tested the updated handlers using a NetCDF ensemble forecast file with an issue

time defined in an analysis_time variable. The file was processed correctly. However,

the processing of NetCDF files remains experimental.

Fix: Failure to aggregate observations to forecast scale [BUG]

Description

Forecasts and observations are paired at a common temporal scale. When the

forecasts and observations comprise different temporal scales, one dataset must be

aggregated (since disaggregation is not supported). When attempting to aggregate

observations, an exception was thrown, indicating that the forecasts could not be

disaggregated.

Cause

The computeAndSetPairs method of the PairedDataSource.java determines

separately whether the observations or forecasts require a change of scale. A

change of scale in one is mutually exclusive of a change of scale in the other.

However, an if/else design was not used in determining whether to aggregate the

forecasts or observations. Following aggregation of the observations, a separate test

was applied to the forecasts, which resulted in an exception (indicating that the

forecasts could not be disaggregated).

Fix

Updated the computeAndSetPairs method of PairedDataSource.java to use an if/else

design in testing whether to aggregate the observations or forecasts.

48

Notes

Tested the updated method with an example that required aggregation of the

observations, as well as an example that required aggregation of the forecasts. In

both cases, the appropriate data was aggregated, without an exception being thrown.

Fix: Inefficient saving of local data in the EVS GUI [BUG]

Description

The second window of the Verification stage saves local data upon entry in the EVS

GUI. The local data is only saved to an EVS project file upon an explicit request to

save the EVS project. A listener is registered to the threshold table for each

verification metric, which saves any edits to the thresholds in the local data store.

Upon editing a given cell in the table, the listener was triggered for every cell in the

table, rather than once for the edited cell.

Cause

The showLocalData method of VerificationB.java registered a CellEditorListener for

each cell in the threshold table for a given verification metric. Upon editing a table

cell, the listener fired a ChangeEvent for every cell in the table, which called the

saveLocalData method of VerificationB.java. Rather than associating a listener with

each cell, a listener should be associated with each column in the threshold table.

Fix

Updated the showLocalData method of VerificationB.java to avoid registering a

CellEditorListener with each cell in the threshold table. Updated the setTables

method of VerificationB.java to register a CellEditorListener for each column class in

the threshold table, which calls the saveLocalData method once for each edit.

Notes

Added a print statement to the saveLocalData method of VerificationB.java to identify

the number of calls to this method before and after the updates. After the updates, a

single edit resulted in a single call to saveLocalData, which is the expected behavior.

Fix: Incorrect updating of local data in the EVS GUI [BUG]

Description

Local data is saved in each window of the EVS GUI upon entry for the active VU.

When selecting a metric in the second window of the Verification stage and updating

49

the local data for that metric, the updates were applied to the corresponding metric

for all VUs in the active project, rather than the active VU only.

Cause

The saveLocalData method of GUIInterface.java is implemented by VerificationB.java

and other windows in the EVS GUI. Rather than obtaining the active VU from an

input variable, the saveLocalData method must call the getSelectedUnit method of

VerificationA.java. However, depending on the context in which saveLocalData is

called, updates may be required to a VU other than the active VU returned by the

getSelectedUnit method. For example, a ListSelectionListener is registered with the

table of VUs in VerificationA.java. Upon selecting a new VU, the updateUnitSelection

method of VerificationA.java calls the saveLocalData method of VerificationB.java.

This call is made only when the ChangeEvent indicates that the value is adjusting.

Under these conditions, the getSelectedUnit method returns the currently selected

VU, and not the previously selected VU for which the local data must be saved.

Rather than obtaining the appropriate VU indirectly, the saveLocalData method of

GUIInterface.java should obtain this VU as an input variable. Similarly, the

showLocalData method of GUIInterface.java should obtain the appropriate VU as an

input variable.

Fix

Updated the saveLocalData and showLocalData methods of the GUIInterface.java

and all implementing classes to include the VU for which any changes are required

as an input variable, avoiding the need to obtain this VU indirectly.

Notes

Upon selecting a metric in second window of the Verification stage and updating the

local data for that metric, the updates were no longer applied to the corresponding

metric associated with other VUs in the active project.

Fix: Failure to conduct spatial aggregation for probability thresholds [BUG]

Description

When forming an AU by averaging the verification results across several VUs, the

verification results for a ThresholdMetric should be averaged together with the

verification thresholds. When computing the VUs and AUs together, both were

computed correctly. However, when separating these stages (i.e. computing the VUs

50

first and then computing the AU), an exception was thrown for each ThresholdMetric,

indicating that the verification thresholds could not be aggregated.

Cause

The aggregate method of DoubleProcedureParameter.java computes an aggregate

verification threshold from a vector of input thresholds (instances of

DoubleProcedureParameter) using a specified aggregation function and

corresponding vector of weights (one per threshold). Alongside the threshold value,

each input threshold comprises several logical parameters. These parameters should

be maintained in the aggregated output. In practice, however, they were not

maintained. This resulted in a conflict in the aggregated DoubleProcedureParameter

and, ultimately, an exception upon attempting to aggregate the input thresholds.

Fix

Updated the aggregate method of DoubleProcedureParameter.java to ensure that

the aggregated verification threshold comprised the same logical parameters as the

input thresholds.

Notes

Reproduced the conditions that led to the exception being thrown, and the thresholds

were computed correctly, without exception.

Fix: Support association of EVS project files with the EVS application [ENHANCE]

Description

In order to support the association of EVS project files with the EVS application, an

explicit command line option is required to instruct the EVS GUI to open with a

specified EVS project file, rather than running the EVS project silently (default

behavior).

Cause

In starting the EVS application, the EVS main method in EVSMainWindow.java was

unable to handle a request to open the EVS GUI with a specified EVS project file,

instead interpreting this as a request to run the EVS project file silently.

Fix

Updated the main method of EVSMainWindow.java to accept a “–gui” option. This

opens the EVS GUI and attempts to load an EVS project file, which is specified after

the –gui argument. The –gui option allows for EVS project files to be associated with

51

the EVS application on a given O/S. For example, in a Windows environment, the

use of a batch file with the variable substitution, %1, allows for an EVS project file to

be opened in the EVS GUI by double-clicking on the EVS project file. In this scenario,

the batch file calls the EVS GUI and passes the EVS project file to the main method

of EVSMainWindow.java using the %1 variable substitution, i.e. –gui %1.

Notes

Tested the default file association in Windows 7. Created a batch file with a single

argument: java –jar EVS.jar –gui %1. Edited the registry to associate the .evs file

extension with the newly created batch file. Double-clicked on an EVS project file,

which was opened automatically in the EVS GUI.

Fix: Abstraction of chart coloring constraints to class constructors [ENHANCE]

Description

Constraints on the color options for lines in the default verification plots were

previously applied upon adding each new dataset to that plot. Specifically, there was

a constraint on the yellow color option, which was visually indistinct from the default,

white, background. This constraint was applied in the addDataset method of each

default chart, namely DefaultXYPlot.java, DefaultXYPlotByLeadTime.java and

DefaultXYAndSamplePlot.Java. Rather than applying this constraint for each new

dataset, a more efficient design would constrain the options in the class constructor.

Cause

Incorrect level of abstraction of the constraints on charting colors. These constraints

were previously applied when adding a new dataset to each chart, rather than on

chart construction.

Fix

Abstracted the constraints on chart colors, notably on the use of yellow, from the

addDataset method of DefaultXYPlot.java, DefaultXYAndSamplePlot.Java, and

DefaultXYPlotByLeadTime.java, to the constructors of these classes.

Notes

Compared the charts produced by each default plotting class before and after the

change. The outputs were consistent.

52

Fix: Placed the advanced options for aggregating pairs in a new window [ENHANCE]

Description

The advanced options for dealing with global constraints on the verification pairs,

such as subsets of dates, forecast and observed values, and aggregation and other

options, are accessible from 2c. Set time parameters > More. One of the windows,

Other options, contained a large number of constraints on aggregating pairs, together

with a single, unrelated, option on the minimum (fractional) sample size required for

metrics to be computed at a given forecast lead time. A more intuitive separation

would abstract the aggregation options into a separate window.

Cause

Mixing of aggregation and other options in the Other options window of the advanced

options for setting global constraints on the paired data.

Fix

Created a separate window for the aggregation options and retained the remaining,

unrelated, option in the Other options window.

Notes

Tested the operation of the GUI with the new window for aggregation options.

Fix: Implemented back-end support for rolling aggregations [ENHANCE]

Description

Previously, aggregation of the verification pairs did not support a rolling aggregation,

only a back-to-back aggregation of the input time-series. Examples of rolling

aggregations include a 3-day moving average (aggregation period) computed every

day (aggregation interval), and a 10-day accumulation computed every month.

Cause

The getTimeAggData methods of PairedData.java only supported a back-to-back

aggregation of the input time-series and not a rolling aggregation with a specified

interval or frequency between aggregations.

Fix

Extended the getTimeAggData methods of PairedData.java to support rolling

aggregations of input time-series (observations, forecasts or pairs) with a specified

interval between aggregations. Added a new class to store the aggregation

53

parameters, VerificationResolution.java. Updated ProjectFileIO.java,

VerificationUnit.java and all method calls to getTimeAggData to use the new class.

Notes

Conducted extensive testing of various scenarios for rolling aggregations, such as 1,

3-, and 5-day means computed every day from 6-hourly and 24-hourly input data.

Tested reading and writing of EVS project files with the new parameters for rolling

aggregations. The files were written and read successfully.

Fix: Implemented front-end support for rolling aggregations [ENHANCE]

Description

Implemented front-end support for rolling aggregations in the GUI.

Cause

The need to include options for rolling aggregations in the Aggregation options

window of the advanced options for 2c. Set time parameters.

Fix

Added options to support rolling aggregations in MoreVerificationWindowDialog.java,

which is accessible from 2c. Set time parameters > More. The rolling aggregation

options were added to the Aggregation window, including a drop down menu for the

aggregation type {BACK-TO-BACK, ROLLING}, for which the default is BACK-TO-

BACK. When selecting a ROLLING aggregation, input options appear for the interval

or frequency of the aggregation and the associated temporal units.

Notes

Tested the input options for rolling aggregations, including the correct display of

options stored within an existing EVS project file and the correct setting, saving, and

writing of options.

Fix: Allowed conditions on valid dates to select whole forecasts [ENHANCE]

Description

When applying global conditions to subset pairs based on forecast valid date, those

conditions were applied strictly to each forecast valid date/time, selecting only those

forecasts (pairs) that met the conditions on valid date. Thus, forecast time-series

(traces) were curtailed when one or more valid times fell outside the date constraints.

54

A soft constraint would allow for the selection of whole forecasts; that is, forecasts for

which any of the valid dates and times meet the constraints imposed.

Cause

The inability to select whole forecasts when applying a condition on forecast valid

date. Specifically, the inability of the DateCondition.java class to discriminate

between individual forecasts (hard constraint on valid date) and whole forecasts (soft

constraint on valid date).

Fix

Updated DateConditions.java to support either a hard constraint or a soft constraint

on forecast valid date and time. A hard constrain selects only those individual

forecast valid dates and times that meet the constraint. A soft constraint selects

whole forecasts for which one or more valid dates and times meet the constraint.

Also, updated the EVSProjectFileIO.java to support the identification of a soft versus

hard constraint (one additional parameter) and added an input option to the Other

options window of 2c. Set time parameters in the GUI.

Notes

Tested the soft constraint on forecast valid date and time, together with the

associated project file I/O and the graphical input and display of this soft constraint.

Fix: Added option in GUI for setting verification window in valid time [ENHANCE]

Description

The EVS project file supports an advanced option to set the time system of the

verification window (i.e. the start and end dates of the period to consider for

verification). The options include issue/basis time or valid time, and the default option

is valid time. This option was only accessible from the EVS project file, and was not

supported in the GUI.

Cause

Lack of front-end support in the GUI to set the time system for the verification

window.

Fix

Updated MoreVerificationWindowDialog.java to include a checkbox for setting the

time system of the verification window to valid time or issue/basis time, where the

55

default is valid time (checked). The new option is accessible via 2c. Set time

parameters > More > Other options.

Notes

Tested the front-end support for setting the time system of the verification window.

The option was displayed, saved locally, and written/read correctly to/from the EVS

project file.

Fix: Implemented front-end support for identifying inadmissible data [ENHANCE]

Description

The EVS project file supports an advanced option for defining inadmissible data.

Inadmissible data is identified with a threshold, an associated logical condition (e.g.

less than), and a value to assign for data that meet the condition. The condition

applies to both forecasts and observations. For example, a lower bound of 0.25mm

may be defined for precipitation, with values below 0.25mm assumed to represent

model/measurement uncertainty and, therefore, assigned zero. Previously, this

option was not supported in the GUI.

Cause

Lack of front-end support in the GUI to impose constraints on admissible data values.

Fix

Updated MoreInputDialog.java to include inputs for the threshold and logical

condition that define inadmissible data and the value to assign for inadmissible data.

These options are accessible via 2c. Set time parameters > More > Other options.

Notes

Tested the front-end support for identifying inadmissible data values. The options

were displayed, saved locally, and written/read correctly to/from the EVS project file.

Fix: Added a metric comprising modified box plots by forecast value [ENHANCE]

Description

A new metric comprising modified box plots by forecast value was added to the EVS.

The forecast values are determined by applying a specified function (mean, median

or mode) to the ensemble members. When several forecasts are identified with a

common forecast value, the errors are pooled across those forecasts.

56

Cause

Inability to plot modified box plots and order them by forecast value.

Fix

The new metric is implemented in ModifiedBoxPlotsByLeadFcst.java, which extends

a new superclass, ModifiedBoxPlotByLeadVal.java. The superclass allows for box

plots to be organized by observed or forecast value. The

ModifiedBoxPlotByLeadObs.java was also modified to implement the new

superclass. Added a new metric parameter, BoxUnpooledFcstPointsParameter.java,

to store the number of equally-spaced quantiles at which the boxes are computed

and drawn. Updated VerificationB.java to provide front-end support and updated

ProjectFileIO.java to allow for saving of the metric configuration to an EVS project

file. Implemented a default plotting class, ModifiedBoxPlotUnpooledByLeadFcst.java,

and associated superclass, ModifiedBoxPlotUnpooledByLeadVal.java. The

ModifiedBoxPlotUnpooledByLeadObs.java was also updated to implement the new

superclass.

Notes

Tested the new metric for several verification projects, displaying the plots within the

EVS GUI, writing the graphical and numerical outputs, saving the configuration to a

project file and re-reading the configuration.

Fix: Improved the handling of missing values [ENHANCE]

Description

Missing values were handled through a global no-data value that applied to all input

data sources, as well as internal calculations and outputs (e.g. of the verification

pairs). The global no-data value is accessed through 2b. Identify input data sources >

More > Other options > Global no-data value. For those input data sources that

contained explicit missing value identifiers (e.g. PI-XML), these identifiers were

ignored and any missing values interpreted according to the global no-data value. As

such, separate missing value identifiers were not supported for observed and

forecast data sources. Further, NaN was not supported as a missing value identifier.

Cause

The inability to handle explicit identifiers for missing values in the observed and

forecast input data sources, together with the inability to handle NaN as a missing

value. For those files that contain missing value identifiers, the missing values should

57

be replaced, via the appropriate data handlers, to the global no-data value. These

data handlers should also accept (and replace) NaN as a missing value.

Fix

Updated the data handlers for PI-XML, Fast Infoset, and NETCDF to identify missing

values according to the explicit identifiers provided. Any missing values (included

NaN values) are now replaced with the global no-data value. As before, the global

no-data value is used to discriminate between valid and missing data internally and in

the EVS outputs (e.g. verification pairs). Likewise, for those data sources that do not

explicitly define a missing value, any values that match the global no-data value are

interpreted as missing. By default, the no-data value is -999.0 and only numeric

missing values are accepted. However, as indicated above, input data sources with a

missing value of NaN (or a prescribed numeric value) are now replaced with the

global no-data value.

Notes

Tested the modified data handlers with input data sources that contained missing

values, including NaN. The missing values were converted to the global no-data

value, as expected.

Fix: Added an ensemble ID to discriminate between input time-series [ENHANCE]

Description

Forecast files in the PI-XML and FI/BIN formats may contain several time-series for

any given location (locationID) and variable (parameterID). These time-series are

discriminated with an ensembleID. However, the corresponding EVS data handlers

were unable to discriminate by ensembleID, instead using the locationID and

parameterID alone. Thus, files containing multiple time-series for a given locationID

and parameterID were not processed correctly.

Cause

For data in PI-XML and FI-BIN format, the inability to discriminate between time-

series with a common locationID and parameterID using their unique ensembleID.

Fix

Enhanced the data handlers for PI-XML and FI/BIN to optionally discriminate time-

series on the basis of ensembleID, as well as locationID and parameterID. The

ensembleID is only required when the input file contains more than one time-series

with the same locationID and parameterID. Updated the MoreInputDialog.java to

58

include an editor for the ensembleID in the GUI, which is accessed from 2b. Identify

input data sources > More > Other options > Forecast file ensemble ID.

Notes

Tested the modified data handlers for time-series that were discriminated by

ensembleID. For those files containing more than one time-series with the same

locationID and parameterID, an error was thrown in the absence of an ensembleID,

requesting input of the ensembleID. When the ensembleID was defined, the input

time-series were discriminated and processed correctly. While the EVS now supports

time-series in PI-XML and FI-BIN format that are discriminated by ensembleID, it is

recommended that large datasets are distributed across several files, in order to

increase flexibility (i.e. to consider only required data) and to minimize I/O time, which

is generally a significant fraction of the total time required for verification.

59

5.0 Changes from EVS 5.1 to EVS 5.2

Fix: Incorrect addition of default Aggregation Unit (AUs) [BUG]

Description

In the Aggregation window of the GUI, copying a default Aggregation Unit (AU) and

then attempting to delete that AU, failed to remove the selected AU. Specifically,

upon deleting the default AU, a new default AU was immediately added to the list of

AUs. Thus, only fully-defined AUs could be deleted from the list.

Cause

In order to avoid the addition of duplicate AUs, the addDefaultUnits method of

AggregationA.java checks for existing AUs with common parameter values.

However, it was only checking for fully-defined AUs that would lead to duplication,

and not for default AUs with the same candidate Verification Units (VUs).

Fix

Fixed the addDefaultUnits method of AggregationA.java to check for default AUs with

the same candidate VUs before adding new default AUs.

Notes

Activated the same code by copying a default AU and then deleting the AU. This

resulted in the AU being removed correctly.

Fix: Misleading error message on setting incorrect weights [BUG]

Description

Weighted aggregation of two of more VUs requires the weights associated with each

VU to be defined in the Aggregation window. The weights must sum to 1.0 and an

error message is encountered when the weights do not sum to 1.0. However, when

an AU has not been previously saved, the error hierarchy leads to a misleading,

generic, error being thrown, which fails to identify the lack of unity in the weights as

the trigger.

Cause

The catch block of the saveData method in AggregationA.java catches an error in the

weights but, before throwing the error, attempts to reset the original weights. Since

this attempt can fail, a more generic error may be thrown, triggering an exit of the

saveData method before the original error can be thrown.

60

Fix

The catch block of the saveData method was updated. The code that attempts to

reset the default weights is now placed in a try/catch block. If this fails, the error is

caught, and the original error (highlighting weights that do not sum to unity) is

correctly thrown. A failure to reset the original weights may occur if no valid weights

were previously defined.

Notes

Setting incorrect weights on first saving an AU now results in the correct error

message being thrown, instead of a more generic message, indicating to the user

that the problem originates in the weights not summing to unity.

Fix: Failure to save a manually entered forecast file data source [BUG]

Description

When attempting to save a manually entered path to a forecast file data source, the

path was not properly saved unless an earlier path existed. In contrast, when an

earlier path existed or the file dialog was used to populate the input, the path was

properly saved.

Cause

An if-clause in the saveLocalData method of VerificationA.java was poorly

composed. This resulted in a failure to catch and handle the above scenario

(manually entered forecast file data source, without a prior data source defined),

namely by saving the manually entered path to the forecast file data source.

Fix

Updated the if-clause in VerificationA.java to properly handle the scenario where a

forecast file data source is manually defined for the first time.

Notes

Checked all possible combinations for defining the forecast file data source.

Fix: Failure to re-populate the list of a searchable combo-box [BUG]

Description

A searchable combo-box allows for a list of items in the combo box to be re-

populated with matching search text. However, upon finding an exact match, the list

was re-populated with a single item and the search text needed to be deleted in order

61

to restore the full (original) list. Also, when finding no matches, the combo box was

populated with an empty list, rather than providing the full original list.

Cause

Two bugs were found in the SearchableComboBox.java, the first concerned with an

exact match (list with one item) and the second concerned with an empty list (no

matches). In both cases, the list associated with the combo-box was not being re-

populated with the original items.

Fix

Corrected two bugs in the SearchableComboBox.java to ensure the combo-box list is

re-populated with the original list when either a single item is found or no items are

found.

Notes

Manually checked all keyboard and mouse interactions with the

SearchableComboBox to ensure that: 1) the full list is returned when a single item is

found or no items are found from the search text; and 2) a reduced list (based on the

matching text) is returned in all other cases.

Fix: Failure to warn of permission errors when saving a project file [BUG]

Description

When encountering a file permission error on writing an EVS project file, the resulting

IOException was output to the command line only and failed to display in the GUI

exception handler.

Cause

The writeObjects method of the EVSMainWindow.java class failed to throw an

IOException, instead catching all exceptions and printing to standard out.

Fix

The writeObjects method of the EVSMainWindow.java class was modified to

propagate all IOExceptions upwards, allowing for proper handling by calling methods,

such as displaying the IOException in the GUI exception handler.

Notes

Recreated the problem by changing the file permission on an EVS project file to read

only. Prior to the bug fix, any attempt to save the EVS project file would result in a

62

“silent” error, printed to standard out only. Following the fix, the IOException is

properly displayed in the GUI exception handler.

Fix: Disappearing modal dialogs [BUG]

Description

Under some (inconsistent) conditions, a modal dialog would disappear behind other

open windows, blocking further input to the EVS until the modal dialog re-appeared

through trial-and-error minimization/maximization of other open windows.

Cause

The parent frame of the modal dialog was not being set properly on construction.

Specifically, due to the order of construction of the modal dialogs before the main

EVS main window, a null parent frame was passed to the constructors of the modal

dialogs.

Fix

Changed the order of construction of the modal dialogs to follow the construction of

the EVS main window. The modal dialogs are now constructed with a non-null parent

frame.

Notes

Tested the modal dialogs under Windows and Linux. No further blocking of modal

dialogs occurred.

Fix: Incorrect re-weighting of VUs associated with an AU [BUG]

Description

Upon changing the weights of a VU associated with an AU in AggregationA.java, the

remaining weights are updated accordingly (e.g. to re-assign equal weights when

VUs are added or removed). The updates are coordinated by the setValueAt method

of the table model associated with the table of VUs, which is called upon a change in

the selection of a VU or a change in weight. However, the checks were not

conditional upon the VU being flagged for inclusion or on the updated value of the

entry passed to setValueAt. This led to incorrect updates to the weights upon editing

unchecked VUs or when the current VU was being deselected (because the status

was checked against the existing selection, not the updated selection).

63

Cause

Failure to properly check the status of the VUs and their associated weights in the

setValueAt method of the table model associated with the table of VUs in

AggregationA.java.

Fix

Updated the setValueAt method of AggregationA.java to properly check the status of

the VUs and their associated weights upon adding or removing VUs or changing

weights.

Notes

Tested the re-weighting of VUs upon adding or removing VUs and when the edited

weight belongs to a VU that is checked versus unchecked. All scenarios performed

as expected.

Fix: Failure to fully clear and reset the GUI on creating a new EVS project [BUG]

Description

On creating a new EVS project, the GUI was not fully cleared, potentially leaving

results from a prior open project. In addition, the GUI failed to return to the first

window in the verification stage.

Cause

The newProject method of EVSMainWindow.java failed to clear all prior data and

reset the GUI to the first window of the verification stage.

Fix

Updated the newProject method of EVSMainWindow.java to clear all prior data and

reset the GUI to the first window of the verification stage.

Notes

Tested by generating results for one EVS project and then creating a new EVS

project. On creating the new project, all data from the old project were fully cleared

and the GUI returned to the first window in the verification stage.

64

Fix: Extend list of observed file types displayed in file dialog [ENHANCE]

Description

By default, only selected file extensions were identified as “observed” data files in the

file dialog. The default file extensions did not include .MAP06 or .MAT, for example.

In order to display these files in the dialog, it was necessary to select “All Files” in the

drop-down menu provided in the file dialog. This was potentially confusing, as it may

not be apparent that the file dialog is showing only a subset of the available files,

based on the default extensions.

Cause

Limited list of default file extensions for observed data files. In particular, the default

file types did not include MAT, MAP06 and MAP01, which are relatively common.

Fix

Added .MAP06, .MAP01, and .MAT to the list of default file types in the file_types.xml

file of the nonsrc/parameterfiles directory.

Notes

Checked that the additional default file types were correctly displayed in the file

dialog when choosing observed data files.

Fix: Handling of aggregation weights in the GUI [ENHANCE]

Description

When setting the weights for spatial aggregation of several VUs, there were several

minor constraints in the aggregation window of the GUI that interrupted smooth user

interaction.

Cause

When editing the weight for one VU in an AU comprising only two units, the weight of

the remaining unit was not automatically updated, based on the requirement for the

total weights to sum to 1.0. In addition, the editing cell in the table was not

automatically closed upon completion, leaving the editor open when selecting other

VUs. Finally, when the weights did not sum to 1.0, the error message was unclear

about which AUs (in the presence of multiple units) failed to sum to 1.0.

65

Fix

Updated AggregationA.java to allow for the second of a pair of weights to be updated

automatically when the AU comprises only two VUs and the first of the pair of

weights is edited. The automatic update ensures that the weights sum to 1.0, as

required. Enforced closure of all open cell editors in the table of weights in

AggregationA.java when switching between VUs or saving the project. Improved the

warning message when weights do not sum to 1.0, identifying the first AU for which

the weights are incorrect.

Notes

Checked all enhancements manually by interacting with the GUI for different

scenarios of the aggregation weights.

Fix: Support reading and writing of EVS pairs in compressed format [ENHANCE]

Description

The EVS pairs are written in an uncompressed ASCII XML format. In order to

conserve disk space, the option for writing (and reading) of the EVS pairs in a

compressed (gzip) format is useful.

Cause

Lack of functionality for writing and reading of the EVS paired files in a compressed

(gzip) format leads to inefficient use of disk space.

Fix

Added optional functionality to read and write the EVS paired files (both raw and

conditional) in a compressed gzip format. The default remains to write the pairs in an

uncompressed format. The option to write the pairs in a compressed gzip format is

accessed through the output options dialog in the first verification window. The output

options dialog is accessed via the “More” button in “2d. Select location for output

data”. Updated the I/O of the EVS project file to store the preference for compressed

output. The option appears under the <write_gzip_pairs> tag of the <paired_data>

block) and applies to each VU separately.

Notes

Checked that the compressed files were written and read correctly and that the

option was written and read correctly to/from the EVS project file.

66

Fix: Dismissing multiple warnings with a single action [ENHANCE]

Description

Upon deleting multiple VUs, several warning messages may be thrown if there are

dependencies between VUs. Rather than scrolling through all messages, the option

to ignore all warnings would be useful.

Cause

The inability to accept all warnings when deleting multiple VUs.

Fix

Added an option in VerificationA.java to accept all warnings when deleting multiple

VUs that have dependencies with other VUs (not all of which may be deleted). Each

warning dialog now comprises an option “Yes to all” to accept all subsequent

warnings and proceed.

Notes

Manually tested all three options, namely to cancel the delete, accept the current

warning message and proceed (possibly to other warning messages), and to accept

all warning messages and proceed to delete. All options worked as anticipated.

Fix: Support reading of Fast Infoset binary XML files [ENHANCE]

Description

Fast Infoset XML provides a binary interface to XML that allows for smaller file sizes

and more efficient processing times.

Cause

Inability to process Fast Infoset binary XML files for the ensemble forecasts and

observations.

Fix

Created a new reader, FastInfosetXMLIO.java, to support reading of Fast Infoset

binary PI-XML for both ensemble forecasts and observations. The new reader relies

on library methods in ohdcommonchps.jar and two Deltares libraries, Delft_Util.jar

and Delft-PI.jar.

67

Notes

Conducted performance testing of read times for ASCII PI-XML and Fast Infoset

binary XML. The read times and disk-space footprint for the Fast Infoset binary XML

files were significantly smaller than ASCII PI-XML.

Fix: Support file filter when reading forecast directory [ENHANCE]

Description

When specifying a directory from which to read forecast files, any non-forecast files

within that directory are processed as forecast files, which leads to an I/O exception.

This is expected behavior, but limiting when the forecasts are archived in directories

with mixed files or subdirectories.

Cause

Inability to process a directory containing mixed forecast files by listing and

processing only those files that match a prescribed filter.

Fix

Implemented a file filter to screen a directory of forecast files and process only those

files that match a prescribed pattern. This only applies when a directory is selected

as the forecast data source, and the filter must be defined explicitly (the default is to

no filter). Added a new class, Filter.java, to filter the files, and updated the

FileDataSource.java to store the filter. Also updated the ProjectFileIO.java to support

reading/writing of the new filter option and MoreInputDialog.java to allow the filter to

be entered in the GUI. Finally, VerificationA.java was updated to accommodate

saving of the filter information.

Notes

Tested the default behavior (no filter) and the new filter option. The default behavior

was maintained and the filter worked as expected, screening only those files that

matched a prescribed pattern. The filter option was preserved in the GUI and in the

project file, as expected.

68

6.0 Changes from EVS 5.0 to EVS 5.1

Fix: Misleading display of reference forecasts for aggregation units (AUs) [BUG]

Description

When aggregating verification results from several locations, multiple Verification Unit

(VUs) are used. Each VU has a separate reference forecast for computing skill and

the overall results are provided in an Aggregation Unit (AU). In the EVS verification

plots, the reference forecast is included in the plot title for skill metrics. For an AU,

the reference forecast is shown for the first VU that forms the aggregation. However,

this was not qualified in the plot titles as being the reference forecast associated with

the “first” VU only.

Cause

For AUs, a failure to identify the reference forecast in the plot titles for skill scores as

being the reference forecast associated with the “first” VU that forms the aggregation.

Fix

Qualified the EVS plot titles for aggregated verification results. The reference

forecast is now qualified as being the “first” of several potential reference forecasts

(one for each VU forming the aggregation).

Fix: Bug in the getWidestItemWidth method of AdaptableComboBox.java [BUG]

Description

The getWidestItemWidth method of AdaptableComboBox.java sets the width of the

AdaptableComboBox dynamically depending on the width of the widest element in

the box. However, the box allowed for iteration over null elements, which resulted in

a NullPointerException when the box comprised no elements.

Cause

Failure to screen out null elements when setting the width of the

AdaptableComboBox dynamically.

Fix

Added a check for null elements in the getWidestItemWidth method of

AdaptableComboBox.java

69

Fix: Bug in the setCellEditors method of EditorTable.java [BUG]

Description

The setCellEditors method of the EditorTable.java accepted generic objects as cell

editors, while the internal code of EditorTable.java casts to TableCellEditor.java

objects in various places, potentially resulting in a ClassCastException.

Cause

Failure of setCellEditors to take TableCellEditor.java objects.

Fix

Updated the setCellEditors method of EditorTable.java to take objects of class

TableCellEditors.java only.

Fix: Bug in modality of two GUI classes [BUG]

Description

The MoreInputDialog.java and the MoreVerificationWindowDialog.java did not

previously allow for modality on construction. However, parameters in these dialogs

are affected by choices in other dialogs. Thus, modality is required to ensure that the

dialogs are always in a consistent state, i.e. that entries cannot be changed

elsewhere before closing these dialogs.

Cause

Inability to set the modality of MoreVerificationWindowDialog.java and

MoreInputDialog.java and to ensure the default setting for each dialog is modal (to

prevent an inconsistent state arising from changes made elsewhere).

Fix

Enhanced the constructors of MoreVerificationWindowDialog.java and

MoreInputDialog.java to allow for modality. Changed the default setting to modal.

Fix: NullPointerException in SearchableComboBox.java [BUG]

Description

In displaying a string representation of items in the SearchableComboBox, toString

was potentially called on null items, resulting in a NullPointerException.

70

Cause

Failure to check for null items in the SearchableComboBox before calling toString on

those items.

Fix

Added checks for null data items, such that toString is only called on non-null data

items.

Fix: Spelling error in the html explanation of the Brier Skill Score [BUG]

Description

Spelling errors were identified in the html description file for the Brier Skill Score

(bss.html), which is displayed in the table of verification metrics in VerificationB.java.

Cause

Spelling errors in the html description file.

Fix

Corrected the spelling errors.

Fix: Real-valued verification thresholds not aggregated properly [BUG]

Description

When aggregating verification metrics by averaging across the inputs, the real-values

associated with the probability thresholds were not previously aggregated. Rather,

the nominal value of the output threshold was equal to the real value associated with

the first input. For consistency with the aggregation procedure applied to the metric

values, the same aggregation function is now applied to the input thresholds, and the

output threshold comprises an aggregate of the input thresholds. This is a nominal

value only, since the actual verification is done separately for each input.

Cause

Failure to aggregate the real-valued thresholds associated with an AU when

conducting aggregation by averaging metrics.

Fix

Added a method, aggregate, to DoubleProcedureParameter.java. The method

conducts averaging of the real-valued thresholds associated with multiple VUs when

forming an average of the inputs metrics. Updated the aggregate method of

71

MetricResultByThreshold.java, which controls the aggregation across multiple

metrics, in order to call the new aggregate method in

DoubleProcedureParameter.java.

Fix: Incorrect re-scaling of aggregation weights when missing first metric [BUG]

Description

Failure to correctly re-scale the weights associated with multiple VUs when

aggregating across missing metrics and, specifically, when the first metric is missing.

For example, when aggregating metrics across three basins {A,B,C} with weights of

{1/3,1/3,1/3}, a missing metric for basin A {MISSING, B, C} resulted in an aggregation

of 1/3*B+1/3*C instead of 1/2*B+1/2*C.

Cause

Failure to rescale aggregation weights properly in the aggregate method of the

MetricResultByThreshold.java class when the first metric is missing.

Fix

Fixed the aggregate method of the MetricResultByThreshold.java class to correctly

rescale weights when the first of several metrics is missing.

Fix: Changed default behavior for “reset” buttons [BUG]

Description

Previously, the default behaviour for the “reset” buttons in the GUI dialog

evs.gui.windows.MoreInputDialog.java was to clear all contents in the associated

tables rather than reset the contents to their original state.

Cause

The default behavior of the “reset” buttons in the GUI dialog

evs.gui.windows.MoreInputDialog.java was misleading, clearing the contents of the

associated tables, rather than resetting the contents to the original state.

Fix

Updated the default behavior of the methods associated with the “reset”

evs.gui.windows.MoreInputDialog.java to return the contents of the tables to their

original state, rather than simply clearing contents.

72

Fix: Renamed MoreOutputOptions.java [ENHANCE]

Description

The naming convention for EVS advanced dialogs is to append “dialog” to the class

name. Thus, renamed MoreOutputOptions.java to MoreOutputOptionsDialog.java for

consistency.

Cause

Inconsistent naming of MoreOutputOptions.java.

Fix

Renamed MoreOutputOptions.java to MoreOutputOptionsDialog.java. The

refactoring was conducted safely.

Fix: Added functionality to allow for joint pairing [ENHANCE]

Description

When comparing verification metrics from two forecasting systems, whether

informally or using an explicit measure of skill, it is generally preferred to use

common forecast valid dates and times. In order to support this, a mechanism was

implemented to jointly pair two VUs; that is, to select only the common pairs from

both VUs. For example, if the pairs used in the denominator of a skill score cover a

different period than the pairs used in the numerator, the skill may reflect a

combination of data variability (not desirable) and real differences in forecast quality

(desirable).

Cause

Previously, it was not possible to coordinate two VUs and conduct verification for only

those pairs that appear in both VUs.

Fix

Changes were required to several EVS classes, including GUI and non-GUI classes.

In particular, updated the getMergedData method of PairedData.java to compute the

intersection of two paired inputs while only returning the pairs associated with the first

input (i.e. pairs that are also present in the second input). Also, renamed the

getMergedData methods to getIntersection. Updated VerificationUnit.java to store the

VU on which joint pairing is conducted, together with associated getter and setter

methods. Also updated the getConditionalPairs method of VerificationUnit.java to

73

compute the conditional pairs subject to any newly defined constraint on joint pairing.

Added a new method syncJointPairs to VerificationA.java to synchronize any VUs

that are used as joint pairs following a change in the name of the VU. Updated the

read/write methods of ProjectFileIO.java to read and write the new parameter for joint

pairing, which appear in the <paired_data> block of the EVS project file. Finally,

updated the MoreOutputOptionsDialog.java to include a new row for specifying a VU

on which to conduct joint pairing and updated the deleteSelectedUnits method of

VerificationA.java to warn on deleting a VU that is used elsewhere for joint pairing.

Performed extensive testing of the new functionality.

Fix: Improved organization of MoreParOptionsDialog.java [ENHANCE]

Description

The close method of MoreParOptionsDialog.java failed to make best use of existing

code elsewhere in MoreParOptionsDialog.java. By splitting close into two methods,

saveParameters and close, code re-use is improved.

Cause

Failure to of close method to make best use of existing code.

Fix

Split the close method into two separate methods, saveParameters and close.

Fix: Allow real-valued bounds on computing metrics [ENHANCE]

Description

Metrics may be computed with thresholds that are defined in real units or

climatological probabilities. When defining thresholds in terms of climatological

probabilities, the corresponding real values are not known in advance. It is

sometimes convenient to specify real-valued bounds on the thresholds for which

metrics are computed, avoiding wasteful computations.

Cause

Inability to constrain the real-valued thresholds for which metrics are computed (e.g.

when using climatological probabilities whose real-valued thresholds are not

specified in advance).

74

Fix

Added real-valued bounds to constrain the computation of metrics for thresholds that

fall within those bounds only. This required additions to several source files, namely

DoubleProcedureArrayParameter.java, MetricParameter.java,

ThresholdMetricStore.java, DoubleProcedureParameter.java. It also required a new

parameter to store the bounds, DoubleIntervalParameter.java. Source files

associated with the GUI and reading/writing of EVS project files were also updated to

accommodate the new parameters, namely ProjectFileIO.java, VerificationB.java and

MoreParOptionsDialog.java.

Fix: Detection limit on forecasts and observations [ENHANCE]

Description

In forecasting and observing some variables (e.g. precipitation), a detection limit may

apply, beyond which it may be preferred to assume a lower or upper bound. For

example, precipitation forecasts falling below an instrument detection limit might be

assigned zero. This may avoid spurious verification results or sensitivities to choice

of threshold (such as the threshold for determining Probability of Precipitation).

Cause

Inability to assign detection limits to forecasts and/or observations prior to conducting

verification.

Fix

Implemented a detection limit, comprising a bound, limit and function type, in a new

class, DetectionLimit.java. Any value that meets the logical test defined by the

function type with respect to the limit (e.g. less than the limit) is assigned the value of

bound (e.g. 0.0). A detection limit is applied jointly to the forecasts and observations

and is associated with a particular VU (for which a new getter and setter method was

implemented). When defined, the detection limit is used by the getConditionedPairs

method of VerificationUnit.java. This method returns conditional pairs after imposing

any detection limit on the forecasts and observations. If a change in measurement

units is requested, the detection limit is defined in the target measurement units of

the forecasts and observations (i.e. in the units of the conditional paired data). The

detection limit is an “advanced” option, not available in the EVS GUI. Rather, it is

specified in the EVS project file under the <paired_data> block using a new

75

<detection_limit>. The <detection_limit> comprises a <limit>, <bound>, and <type>,

where the latter may include: isLess, isGreater, isLessEqual, and isGreaterEqual.

Fix: Option to exit MoreInputDialog from the Forecast Scale table [ENHANCE]

Description

Previously, there was no option to exit the MoreInputDialog.java via an “OK” button

from the Forecast Scale table. Rather, it was necessary to navigate to one of the

adjacent tabbed panels of the MoreInputDialog.java to exit. While the previous

behavior is expected usage on first entering data, it is inconvenient on editing data,

since editing may focus on the Forecast Scale table only (from which an exit

sequence via a call to “OK” should be possible).

Cause

Inability to exit the MoreInputDialog.java from the tabbed panel containing the

Forecast Scale table.

Fix

Added an exit (“OK”) option to the tabbed panel of the MoreInputDialog.java

containing the Forecast Scale table.

Fix: Separate pairing options from the “Other options” dialog [ENHANCE]

Description

The MoreInputDialog.java comprises a tabbed panel with “Other options.” This

tabbed panel collects together a broad range of options associated with the input

data. Many of these options relate to pairing of forecasts and observations. In order

to improve the organization of these options and, specifically, to separate out the

pairing options, a new tabbed panel of “Pairing options” was required

MoreInputDialog.java.

Cause

Lumping together of too many options in the “Other options” table of the

MoreInputDialog.java, including multiple options that control the pairing of forecasts

and observations.

76

Fix

Implemented a new “Pairing options” table in the MoreInputDialog.java and moved all

options related to pairing from the “Other options” table to the new table of pairing

options.

Fix: Improved control on aggregating forecasts and observations [ENHANCE]

Description

Added new functionality to the EVS pairing process to allow for improved control on a

change of scale of the forecasts and observations prior to conducting pairing.

Previously, the choices for aggregation (and the associated controlling variables)

were shared between methods used to aggregate forecasts and observations prior to

pairing and methods used to aggregate the pairs themselves. There was no separate

control on aggregating forecasts and observations before pairing. This prevented

pairing in some cases (i.e. when different parameter values were required for

aggregation before pairing versus aggregation after pairing). For example, if the

observed data begin at 12 UTC and comprise 6-hourly values, while the forecasts

begin at 0 UTC and comprise daily values, separate control on the observations

would allow the first two observations to be skipped and pairing to proceed at the

aggregated daily scale. Subsequently, the pairs may be aggregated to explore

verification results at the 5-daily scale.

Cause

Linking of functionality for aggregating forecast and observations before pairing to

aggregating of pairs, i.e. shared variable values for these two scenarios. This

prevented separate control of aggregation for pairing purposes, which is important

when the forecasts and observations are defined at different scales (i.e. when

aggregation of one or the other is essential prior to pairing).

Fix

Added new variables to the VerificationUnit class, namely the fcstAggStartHourUTC

and the obsAggStartHourUTC, together with the fcstStartLeadHourUTC to control,

respectively, the start time for aggregating observations, the start time for

aggregating forecasts and the first forecast lead time at which to begin aggregation.

Implemented corresponding getter and setter methods. Updated the EVS project file

I/O to accommodate the new variables. Added a new table to the advanced options

77

for input data, evs.gui.windows.MoreInputDialog.java, to provide access to the new

options. The new table comprises these and other options for pairing data.

78

7.0 Changes from EVS 4.0 to EVS 5.0

7.1 Changes in default behavior

 Altered the default functionality of the EVS when reading ASCII files to interpret

the date strings in a given format without leniency. For example, 200005 was

leniently processed when the required format was yyyyMMddHH, despite the

missing ddHH. Due to the Java API for Calendar, this lead to an undesirable

interpretation of the dates (producing wrong dates without warning) when the

dates on file were corrupt, instead of failing (desirable). A non-lenient

interpretation of dates is now implemented and an error thrown if the dates on

file do not match the required date format.

 When deriving climatological probabilities from a specified source of observed

data, the climatological probabilities are derived from the paired observations

unless explicitly requested to use all available observations (from the GUI,

using the advanced option: 2b. Identify input data sources > More > Other

options > Use all observations (not just paired) to determine climate thresholds;

and from the EVS project file using the XML tag

<use_all_observations_for_climatology>). Previously, the climatological

probabilities were determined from all available observations between the start

and end dates of the verification period, without any options to control this

behavior. Now, the climatological probabilities may be determined from the

paired data, from all available observations, or from an arbitrary subset of

observations (by controlling how date and value conditions are applied to the

observed data).

7.2 Bug fixes related to Graphical User’s Interface

 Updated the box plots by observed value to include the units of measurement

on the domain axis (previously this was stated on the range axis only).

 In the second window of the Verification stage, clicking “Do all” to apply the

thresholds for the currently selected verification metrics across all other metrics

required the thresholds in the table to be finalized (i.e. the table row to have

stopped editing) otherwise erroneous thresholds were reproduced across all

metrics. The editing is now finalized automatically before the thresholds are

copied.

79

 Fixed a bug in AggregationA.java whereby the Aggregation Units (AUs)

became incorrectly ordered upon saving, leading to an inconsistent state in the

locally-stored parameter values.

 In the deleteReferenceFcst method of VerificationA.java, a map iterator was

modifying elements in a map concurrently, leading to a

ConcurrentModificationException.

 In VerificationB.java, when identifying thresholds as "main" in the threshold

table, a modification followed by a save was not being registered on reloading a

project because the table row selection was maintained across loading

projects, yet the save index was cleared, leading to a conflict between the two.

 The RankHistogramPlot.java failed to plot the rank histogram in the desired bar

chart form when only one “main” threshold was requested. Instead, the bar

chart format was only plotted if the threshold count was one.

 Fixed a bug that prevented the proper display of the EVS html help documents

in an external browser. The solution involved decompressing the html

documentation on-the-fly from the EVS.jar and then pointing the browser to the

decompressed files for display. All help documentation can now be viewed on-

the-fly in an external web browser.

 Week 53 was not supported as a conditioning option in the GUI (this can occur

in leap years). This is now supported.

 The addDefaultUnits method of AggregationA.java failed to add an AU for each

unique combination of VUs.

 Fixed a bug in OutputA.java whereby a ClassCastException was thrown upon

wrongly casting Double valued lead times in the lead time table as Integer

objects. This only occurred when selecting a subset of lead times for display.

 The results from all VUs were removed upon cancelling the calculation of one

VU (i.e. the clean-up extended too far, removing all results).

7.3 Bug fixes not related to Graphical User's Interface

 Sample counts were not being written properly to the XML metadata files.

 Timezone offsets other than UTC (i.e. zero offset) in the PI-XML forecast files

were not being processed correctly.

80

 Fixed a bug in method setTargetMeasurementUnitsFunc of

evs.analysisunits.scale.Support, whereby a request for no change in

measurement units could be coupled with a function that did imply a change in

measurement units, leading to an undesirable change in units. Added a check

to prevent this.

 When using another VU as a reference forecast in a skill calculation, any

renaming of that VU was not properly reflected in the list of reference forecasts.

 When loading AUs into the GUI, the project file loaded without warning if the

AUs comprised VUs that were miss-spelled. Modified a try/catch block to throw

an appropriate error, resulting in the (correct) failure to load the project.

 Fixed a bug in the loading of project files whereby the display of AUs was not

updated if an existing project was loaded or existing units were defined but not

saved in a project.

 The readInHeader method of the evs.data.fileio.ohdfile.data.Datacard file

reader incorrectly threw a NullPointerException rather than an IOException

when reading a null file handle, leading to an ambiguous error message about

the cause of the problem.

 Fixed a bug in the readAndSetClimatology method of PairedDataSource.java

whereby user-specific IDs for the observed data other than locationID and

variableID were not being checked and used if available. For the PI-XML data,

several IDs may be used at any given location, with different IDs for

observations and forecasts, hence the need for user-specific file IDs separate

from the main IDs used for verification.

 In the ProjectFileIO.java class, relative paths were not correctly saved either for

AUs or for the paired data. Relative paths can now be used for all data sources

in the EVS. Paths are resolved relative to the directory in which the EVS.jar is

located.

 In the ASCIIFileIO.java, date strings of different length than the specified format

string were still processed (i.e. the dates were interpreted leniently), leading to

unexpected dates upon reading ASCII files. A non-lenient implementation was

adopted.

 Fixed a bug in the determination of verification thresholds from the

climatological observations. While a file containing an extended, unconditional,

81

climatology could be specified in place of the paired observations, the

unconditional climatology was incorrectly ignored under some circumstances.

 In VerificationUnit.java, a change of units to an unconditional climatology was

applied to missing data (-999.0). Following application to the missing data,

these data were no longer interpreted as missing but (incorrectly) as non-

missing data with arbitrary values (depending on the requested change of

units).

 Fixed a bug in the PISAXHandler.Java whereby a decimal time offset in XML

was not being read and interpreted properly, leading to an (incorrect) time

offset from UTC of zero. This occurred when the time system in PI file was

mistakenly expressed as a decimal (e.g. -5.0 for EST). A partial fix to this bug

was implemented previously, but the fix failed under specific circumstances,

now corrected.

 In setting explicit forecast/observed file IDs for PI-XML etc., the check on

equality of null IDs was failing, leading to existing pairs and results being

deleted upon opening of an additional options dialog (that contained the IDs)

after a verification run; paired data are always auto-deleted upon a change in a

parameter that potentially affects the pairs. The bug/improper method

invocation was located in StringUtilities.nullEquals. This method was enhanced

to take an additional parameter allowing empty strings to be treated as null.

 Fixed a bug in the specification of weeks of the year on which to condition,

whereby integer weeks of the year were interpreted as one week too late.

 Fixed a convoluted complex bug whereby AUs were not being deleted properly

for VUs whose parameters had changed, dictating the deletion of the AU. This

was due to the deletion taking place within the loop in which VUs were

checked, thus allowing a VU to be associated with an AU that would later

disappear due to changes in other VUs (later in the loop). This specifically

occurred when the offending VU comprised an AU with only two VUs of which

the earlier VU was one. Moved the check for setting AUs outside of the loop for

checking whether AUs should be deleted.

 In the temporal aggregation routine getTimeAggData, the number of rows to

aggregate was determined from the separation in time between two forecasts.

However, when a time constraint on the processed data led to the first trace

having a single time, the hour determination between forecasts was incorrect.

82

The bug was fixed by splitting the data into traces and finding the first one with

more than two consecutive times from which the forecast frequency could be

determined correctly.

 The read method in PublishedInterfaceXMLIO.Java threw a generic

IOException, yet code in the PairedDataSource.java that calls this method

relied on a ConditionException being thrown and caught when the file was

processed properly but did not contain data of interest. The result was that,

when processing data for the reference forecast only, the appropriate exception

was not being caught and thrown and the reading of other files (with valid data)

did not continue. Instead, the whole I/O failed indicating that no data could be

read for the reference forecast, due to no data being accepted from a single

file. The code in PublishedInterfaceXMLIO.Java was updated to throw a

ConditionException.

 Fixed a bug in the identification of VUs to include in AUs whereby the

VerificationUnit.aggregationEquals method was testing the quality of the

support for the forecasts and observations using the equals method (exact

equality) rather than the

evs.analysunits.scale.TemporalSupport.equalsOnUnitChange method

(equality) after any requested changes in measurement units. This led to valid

candidates being rejected for having different support, despite the equivalent

support after the requested unit change was implemented.

 A memory leak was discovered in the EVS when using a large number of

stations (e.g. > 100). This stemmed from a persistent reference to paired data

within each VU, after the VU had been processed. The logic for retaining the

pointer was to allow for quicker calculations when subsequently processed VUs

depended on earlier units (e.g. for skill scores or aggregations across

locations). The code was improved to release the pointer to old pairs when no

longer needed.

7.4 Feature upgrades and modifications related to Graphical User's Interface

 Re-labeled the "Start" button in the GUI Output dialog to read "First."

Previously, “Start” was confused to mean generate output (“Run”).

 Removed the individual "Save" buttons from each GUI window, as the "Save"

option is always accessible from the task bar. This avoids confusion about

when to save a project.

83

 When exiting the GUI, the options now include saving the current project, not

saving the project, or cancelling. Previously, only exit (without save) and cancel

options were available, potentially leading to the inadvertent failure to save a

current project.

 Added warning messages on setting the date formats for ASCII whereby case

sensitivity in the date formatting could be missed, inadvertently, leading to the

incorrect interpretation of dates (e.g. m versus M for minute versus month).

This required additional warnings in AnalysisUnit.java, ASCIIFileIO.java,

OHDFileIO.java and a new method in StringUtilities.java to check the dates.

 Added several options to the MoreVerificationWindowDialog.java to allow for

conditioning on dates that represent forecast issue times as well as valid times.

 Added parameter support and plotting options for a new verification metric,

namely the rank histogram.

7.5 Feature upgrades and modifications not related to Graphical User's Interface

 Allowed for conditioning of verification pairs with date conditions that comprise

forecast issue times as well as valid times.

 Added the rank histogram to the available verification metrics in the EVS. Tied

ensemble members are treated by randomly sampling from the tied ranks. By

default, the rank histogram comprises the relative frequencies (probabilities)

that an observation falls between two ensemble members, in order to allow

simpler comparisons between thresholds or forecast datasets with different

sample counts. However, an advanced option allows for the sample counts to

be expressed in absolute units rather than empirical probabilities. When the

rank histogram is computed for a single dataset, without the use of thresholds

to subset data (i.e. conditional rank histograms), a traditional histogram is used.

When multiple subsets of the original sample data are used (i.e. thresholds),

the resulting “conditional rank histograms” are plotted with lines for improved

visibility.

 Allowed for simple transformations of the EVS XML outputs using an Extensible

Stylesheet Language Transformation (XSLT). The transformation is

implemented on the command line using a XSLT style sheet. This simplifies the

use of the EVS outputs in secondary applications, which require a different

format than the native format output by the EVS.

84

 Added a minimum sample size constraint when computing metrics. If the

sample size falls below the minimum constraint, the metric is not computed.

The precise meaning of that constraint varies between metrics. For example,

when computing dichotomous metrics (i.e. metrics computed with respect to

discrete events), such as the Brier Score or reliability diagram, the minimum

sample size refers to the smaller of the number of occurrences and non-

occurrences of the event. For continuous metrics, such as the mean error or

the CRPS, it simply comprises the number of (possibly conditional) samples

from which the metric was computed. This option is only available via the EVS

project file using the XML tag <minimum_sample_size_parameter> for a

chosen metric, together with an integer value for the minimum sample size.

 Allowed custom attribute units to be defined (previously, this was constrained to

units in the EVS unit library).

 Expanded the default attribute units available in the EVS unit library.

 When climatological thresholds are specified that refer to duplicate real-valued

thresholds, these duplicates are no longer computed.

 Updated PairedData.java to store verifying observations locally in order to

avoid re-reading them from file. Also, separated between the verifying

observations read from file (the unconditional observations) and those

associated with the paired data. This allows for an unconditional climatology to

be stored locally also. An immediate benefit was a reduction in the run times

when conducting verification with large observed datasets.

 In order to circumvent the high memory usage by the EVS for those forecast

locations where the forecasts are much more resolved (e.g. hourly) than the

temporal resolution required for verification (e.g. daily), an option was included

to store the paired data in their aggregate (e.g. daily) resolution rather than

their native resolution. Further, the forecast I/O was updated to allow for “on-

the-fly” aggregation of the forecasts (i.e. after reading each file), thereby

avoiding the need to read and store all forecasts at their native resolution.

 Reading of NWS binary files for “Conditional Simulations” (CS) was previously

restricted to forecast data, not observations, yet the NWS binary files may

contain simulated streamflows that are useful for verification purposes. Of the

NWS formats previously supported, only CARD was supported for observations

85

and NWS binary for forecasts. The NWS binary (CS) format is now supported

for verifying observations (which may comprise simulated streamflows).

 Expanded the range of options for allowing conditioning of the sample

climatology in the EVS as a baseline forecast (i.e. the use of a “conditional

climatology” as the baseline).

 Added new constraints for restricting the reading of forecasts and observations

when conducting pairing. Previously, limited constraints were provided on a file-

reader-specific basis for restricting the range of dates and lead times

processed. This was abstracted into a separate class, ConditionArray.java, for

storing an array of conditions. Constrained I/O is now implemented consistently

across all file readers, simplifying the coding of further constraints in future.

Currently, constraints are allowed on the period of record and on forecast lead

times.

 Improved the memory management during pairing of very large datasets by

PairedData.java (e.g. required for long-range hindcasting). Specifically,

updated the sortTraceByTrace method that’s sorts the pairs in trace order,

using a new ForecastTime.java object to automatically sort the pairs in a

TreeMap, rather than using layered TreeMaps. The resulting code is marginally

slower for small datasets, but significantly improves the memory management

for very large datasets.

 Added several new temporal aggregation functions to the FunctionLibrary.java

class.

 Abstracted an option to conduct strict temporal aggregation (ignoring data

blocks with any missing data versus processing the non-missing data) from a

class variable in PairedData.java to a method variable in getTimeAggData,

allowing strict aggregation to be controlled via the appropriate method call,

rather than being hard-coded to always perform strict aggregation.

 Added functionality in PairedData.java to handle NaN values, as well as

missing values, and also updated the missing value identifier in

VerificationUnit.java to ensure that NaN is not a valid missing value identifier. In

the process, abstracted the search for missing and NaN values to more generic

functions in FunctionLibrary.java, an example of which is the new

VectorDoubleProcedure.java

86

 Added an option to specify the graphics output format on the command line by

adding a graphics format tag underneath the <output_data> tag in the project

file, namely <output_graphics_format>, with supported options comprising

JPEG, PNG and SVG (Scalable Vector Graphics) and the default, JPEG.

7.6 Feature upgrades and modifications for developers

 Moved all non-source files from the /src directories to /nonsrc. This required

some code improvements to locate parameter files that were previously located

underneath the source tree. The refactored structure is cleaner, ensuring only

source code is located underneath the source tree.

87

8.0 Changes from EVS 3.0 to EVS 4.0

8.1 Changes in default behavior

 The observed and forecast file types must now be explicitly defined. This

avoids ambiguities and performance issues that can arise from auto-detecting

the file types (by opening and reading in the first few bytes in the file and

checking against expected types). The default data types are ASCII. Thus, old

project files for which paired data are no longer available will encounter an I/O

error message if the file types are not ASCII (requiring the types to be explicitly

defined for the first time).

 Changed the metric type of the ROC Score from a test of the “Ensemble

distribution” to a test of “Ensemble skill.” Arbitrary reference forecasts are now

supported for the ROC Score, not just sample climatology.

8.2 Bug fixes related to the Graphical User’s Interface

 Corrected several broken hyperlinks in the html descriptions of the verification

metrics, which are displayed in the second window of the “Verification” stage.

 Fixed a bug whereby the internal hyperlinks between the descriptions of the

EVS verification metrics (i.e. from one html description to another) were not

accessible. This was due to the packaging of these html descriptions within a

single executable JAR file. In order for the internal links to work properly, a

separate directory containing the html descriptions (outside of the executable

JAR file) is required, and is now provided with the distribution, namely

/evs/resources/statsexplained. The consequences of moving the executable

JAR or not downloading this separate directory are minor (i.e. the internal

hyperlinks will not work, and navigation to the appropriate description must be

performed manually). However, an error message is now provided in that case,

indicating that the html resource cannot be found locally.

8.3 Bug fixes not related to Graphical User’s Interface

 Corrected the importing of NWS Card files to account for several forecast issue

times within one day. Previously, the issue date was represented by the year,

month, and day of month, but not the hour of day. This led to the duplication

(and subsequent elimination) of verification pairs that were assumed,

incorrectly, to originate from the same hour of the day.

88

 Fixed several bugs in the reading of PI-XML files, including the failure to read

observations in PI-XML format.

 Fixed several minor bugs identified by FindBugs:

http://findbugs.sourceforge.net/

8.4 Feature upgrades and modifications related to Graphical User’s Interface

 Added the facility to specify the observed and forecast file types in the first

verification window, via drop-down menus.

 Added the option to manually specify the date formats for ASCII observed and

forecast files. These options appear in the “Other options” pane of the

“Additional options” dialog. The “Additional options” dialog is accessed using

the “More” button associated with the input data (2b) in the first window of the

“Verification” stage.

 Added an option to specify the number of decimal places for writing verification

pairs (the default is 5). This option appears in the “Other options” pane of the

“Additional options” dialog. The “Additional options” dialog is accessed using

the “More” button associated with the input data (2b) in the first window of the

“Verification” stage.

 Added an option to use all observations when computing the sample

climatology corresponding to real-valued thresholds. This option appears in the

“Other options” pane of the “Additional options” dialog. The “Additional options”

dialog is accessed using the “More” button associated with the input data (2b)

in the first window of the “Verification” stage.

 Added an option to suppress the writing of conditional pairs via the GUI.

Previously, this option was available in the project file only. It is now accessed

using the “More” button associated with the output data (2d) in the first window

of the “Verification” stage.

 Added the RME and associated explanation and parameter options to the

second window of the “Verification” stage.

 Added an option to apply the thresholds defined for a selected verification

metric to all other metrics associated with the current Verification Unit (VU).

The IDs and status of the thresholds as “Main” (i.e. thresholds for display) are

also copied. When copying thresholds that comprise an unconditional

constraint (i.e. use of “All data”), the unconditional threshold is only copied to

metrics that are based on discrete events. The feature is accessed via the “Do

all” button under the basic parameter options (3c) in the second window of the

http://findbugs.sourceforge.net/

89

“Verification” stage (after selecting a metric that comprises thresholds as a

basic parameter option).

 Reorganized and improved the display of additional parameter options for the

verification metrics. These are accessed via the “More” button from the basic

parameter options (3c) in the second window of the “Verification” stage.

 Added options relating to the calculation of confidence intervals for the

verification metrics. These include specifying one or more intervals in the range

[0,1], together with the parameters of the stationary block bootstrap algorithm.

These options are included in a separate tabbed pane (labeled “Confidence

intervals”) under the advanced parameter options for a particular metric. The

advanced parameter options are accessed via the “More” button from the basic

parameter options (3c) in the second window of the “Verification” stage.

Additional options apply to the calculation of confidence intervals for AUs.

These options are accessible via the “More” button, which is located adjacent

to the tabulated list of VUs (2b) in the “Aggregation” stage. The options include

omitting the calculation of confidence intervals for the AU (regardless of

whether they are required for particular VUs) and specifying whether the

component VUs are statistically dependent.

 Added the option to pool verification pairs across several forecast locations and

to compute the verification metrics from the pooled pairs, rather than averaging

the metrics from the individual locations. Previously, this option was only

accessible via the XML project file. It is now accessible via the “More” button,

which is located adjacent to the tabulated list of VUs (2b) in the “Aggregation”

stage.

 Added shortcuts for selecting particular combinations of metrics in the products

table (1b) of the “Output” stage. These options are accessed by right-clicking

on the products table. New options include the ability to select all forecast lead

times for the selected metrics across all VUs (e.g. to output results for the

correlation coefficient across several VUs).

 Improved the error handling and reporting code, providing more specific and

detailed error messages.

8.5 Feature upgrades and modifications not related to Graphical User's Interface

 Added the facility to manually specify the date formats used in the ASCII

observed and forecast files. A date format is based on the elementary

components, yyyy (year), MM (calendar month), dd (day of month), HH (hour of

90

day in the 24-hour clock), mm (minute of hour) and ss (second of minute). The

elements are separated with single characters or whitespace (e.g. MM/dd/yyyy

HH) or appended without separators (e.g. yyyyMMddHH). The default date

format is MM/dd/yyyy HH.

 Added the relative mean error (RME) to the set of deterministic metrics

available in the EVS. The RME comprises the mean error as a fraction of the

mean observed value over the sample.

 Added an additional method for computing the Area Under the Curve (AUC) for

the empirical Relative Operating Characteristic (ROC) Score. The default

method remains the algorithm described in Mason and Graham (2002): Mason,

S.J. and Graham N.E., 2002: Areas beneath the relative operating

characteristics (ROC) and relative operating levels (ROL) curves: Statistical

significance and interpretation, Quarterly Journal of the Royal Meteorological

Society, 30, 291-303. The alternative involves computing the AUC from the

empirical ROC curve, which is based on a finite number of points/classifiers.

The integral of the empirical ROC curve (AUC) is computed using the trapezoid

rule. In most cases, the algorithm described by Mason and Graham (2002)

generates larger values of the AUC (skill) than the integral of the empirical

ROC curve.

 Extended the ROC Score to allow for arbitrary reference forecasts, not just

sample climatology.

 Added the likelihood-base-rate (LBR) decomposition of the Brier Score into

Type-II conditional bias, discrimination and sharpness, and the corresponding

decomposition of the Brier Skill Score into relative Type-II conditional bias,

relative discrimination and relative sharpness.

 Added options for computing confidence intervals for the verification metrics

(except the box plots). One or more confidence intervals may be computed for

selected metrics of a VU and for an AU. The confidence intervals are derived

from a stationary block bootstrap of the verification pairs. In order to account for

temporal statistical dependence, the bootstrap resampling applies to

contiguous “blocks” of pairs rather than individual pairs. The blocks are

parameterized by their mean length and are sampled from a geometric

distribution with that parameter. In order to account for spatial dependence

(when computing aggregate verification results across several locations), the

absolute times of the sampled blocks may be coordinated/fixed across all

91

locations. The bootstrap algorithm is multi-threaded for improved performance

on multi-core, multi-processor, machines.

 Provided additional command line options for suppressing the writing of either

the graphical or numerical outputs when running the EVS in batch mode. The

writing of graphical outputs is suppressed with –g and the writing of numerical

outputs is suppressed with –n.

 Provided additional command line options for converting between legacy file

formats (NWS Card and NWS CS binary) and a generic ASCII file format used

by the EVS. The option –bin2asc in.cs out.fcst converts the NWS CS binary

file, in.cs, to the ASCII output file, out.fst. The option –fcard2asc in.fcst out.fcst

converts the forecast data in NWS Card file, in.fcst, to the ASCII output file,

out.fst. The option –ocard2asc in.obs out.obs converts the observed data in

NWS Card file, in.obs, to the ASCII output file, out.obs.

 Improved the R utilities script for reading the XML numerical outputs from the

EVS into R (www.r-project.org). The utilities script is located in

/evs/resources/rscripts/Utilities.R. There are three key methods for reading the

different EVS outputs, namely readEVSScores, which reads the verification

scores, readEVSDiagrams, which reads the verification diagrams (e.g.

reliability diagram, spread-bias diagram) and readEVSBoxPlots, which reads

the EVS box plots.

 Provided two self-contained R scripts in

/evs/resources/rscripts/example_scripts to demonstrate the plotting of EVS

output in R. The necessary EVS (XML) outputs are located in

evs/resources/rscripts/example_scripts/example_evs_out.

 Added an option to omit ‘no-data’ values from the paired files.

8.6 Feature upgrades and modifications for developers

 Abstracted control of metric calculation by lead time from the individual metrics

to a new method in the evs.metric.metrics package, namely

computeByLeadTime. This leads to much cleaner and more extensible code.

For example, it is no longer necessary to iterate through lead-times when

implementing the compute method of a new metric. Rather, the compute

method is now generic for the given input data. There are several downstream

effects of these changes that have led to significantly better performance,

particularly when computing bootstrap confidence intervals (i.e. repeatedly

calculating the metrics).

http://www.r-project.org/

92

9.0 Changes from EVS 2.0 to EVS 3.0

9.1 Changes in default behavior

 Changed the temporal aggregation default to store the maximum valid time of

the input times (in UTC) when conducting aggregation. Previously, the default

was to compute the mean of the input times. The default for handling the

forecast lead times remains to compute the maximum of the inputs. Thus, for

example, aggregation of four six-hourly pairs at increasing UTC times of {18, 0,

6, 12} previously generated an aggregated paired value with time UTC 3, but

will now generate an aggregated paired value with time UTC 12 (note that 12

proceeds 18 when considering date). Thus, the aggregated value should be

interpreted as the value over the period of aggregation immediately preceding

the stated time.

 Changed the start and end dates of the verification period defined in the first

verification window from the forecast time zone to UTC. The start and end

dates begin and end at 00 UTC on the specified date, respectively. Thus, in

order to include verification pairs that fall on the specified end day, one day

should be added to the input date.

 Changed the order of error messages displayed in the GUI Console window

(not to be confused with an external console) so that the latest error messages

are displayed at the top of the console rather than appended to the bottom.

9.2 Bug fixes related to Graphical User's Interface

 Fixed a bug in the table of thresholds for each verification metric, ensuring that

the scrolling window expands properly as new thresholds are added (previously

a fixed limit).

 Fixed a bug in the table of candidate units for aggregation, ensuring that the

scrolling window expands properly to show all available units (previously a fixed

limit).

 Corrected a bug in the GUI for selecting pre-conditions to apply to the

verification pairs. Entering incorrect conditions lead to a (correct) warning, but,

when subsequently cancelling further edits, the existing (valid) conditions were

removed rather than being returned to the original (valid) state.

93

9.3 Bug fixes not related to Graphical User's Interface

 Fixed a bug in the BSS and CRPSS to write the null value identifier where the

output of the BSS or CRPSS is undefined (i.e. divide by zero), thereby allowing

proper display in the plots for those lead times where the score is defined.

 Fixed a bug in the reading of an XML paired file where one or more ensemble

members were missing, i.e. the number of members in the paired file (which

does not store missing members) varied. The result of this bug was that

missing members were initialized with the java default value for a float, namely

0.0, and not the pre-defined null value identifier.

 Fixed a bug in the skill score calculations (BSS and CRPSS). When these

calculations were performed repeatedly (i.e. by clicking “Run” two or more

times), the skill scores were zeroed on the second or further runs. While the

metrics would not normally be re-computed, the bug has been fixed.

 Fixed a bug in the application of value conditions, whereby the conditions were

being applied before any requested changes in measurement units rather than

after. The value conditions (and hence real-valued thresholds on which those

conditions are based) are now in the target measurement units.

 Fixed a bug in a method for ordering the paired data by trace, whereby the last

trace (in order of forecast valid time) was not being appended to the results

and, therefore, included in the verification results.

 Spell-checked all developer documentation and corrected spelling mistakes.

9.4 Feature upgrades and modifications not related to Graphical User’s Interface

 Packaged the EVS into a single executable JAR file with all associated libraries

using an ANT build script. The EVS is now delivered as a single executable

JAR file, without the need to maintain an internal directory structure for

dependent libraries (which are now packaged and accessed from within the

executable JAR).

 The writing of conditional pairs (i.e. a subset of the overall pairs with any

conditions on variable value or date applied) has been made optional to speed-

up the processing of large numbers of verification points. This option is

implemented via the <write_conditional_pairs> tag of the <paired_data> section

of the EVS project file, with a default of true, i.e. conditional pairs are written by

default, as before. This option is also accessible via the GUI (see below).

94

 Improved the performance of the temporal aggregation routine and provided

options for the type of aggregation function applied not only to the forecast

data, but to the forecast valid times and lead times. Also changed the default

behavior; previously, the forecast valid time was given the mean of the input

times and the lead time assumed the maximum of the input times; the forecast

valid time now assumes the maximum of the input times (see below).

 Improved information and error messages printed to standard out (i.e. the

console, if EVS was initiated from a console window).

 Added options for aggregating the support of the observed data to match the

support of the forecasts, including the ability to compute an accumulation over

a forecast window. Eventually, an aggregation function will be implemented for

every possible combination of input support allowed in the EVS (including a

change of measurement units).

 Added methods for reading paired data in the same ASCII format to which the

XML pairs can be converted. Thus, paired files may be produced and read in

ASCII format (as well as forecasts and observations) where convenient.

 Implemented additional R scripts for plotting the verification results produced by

the EVS (i.e. the XML output), including a script that will plot the EVS single-

valued metrics and ensemble scores as a function of threshold value.

 Implemented the three-part decomposition of the Brier Score into: Brier Score =

reliability – resolution + uncertainty and the associated graphical and numerical

products.

 Implemented additional options for averaging the forecast ensemble members

when computing single-valued verification metrics such as the mean error, root

mean square error, mean absolute error, and correlation coefficient. The

default remains to compute the ensemble mean. Additional options now

include the ensemble median and mode.

 Added the Mean Absolute Error of the ensemble average to the single-valued

verification metrics.

 Added the climatological frequency and the zero-skill line to the reliability

diagram (located half-way between the climatological frequency and the

expected frequency for a reliable forecasting system). These curves are

available in the XML output files, but are not plotted within the EVS.

 Backwards compatibility has been maintained for earlier project files. Upon

saving old project files within a new version of EVS, new options will be written

with their default values.

95

 Implemented the concept of “main” and “auxiliary” thresholds for metrics that

either require or support thresholds. Currently, the “main” thresholds are used

to identify events (or subsets of data) that should be included in the graphical

outputs from the EVS. By default, both the “main” and “auxiliary” thresholds are

included in the numerical outputs from the EVS. This information is stored as

an additional XML tag in the project file, labeled main_threshold, which

contains a list of Boolean values equal in length to the number of thresholds

(true indicates a main threshold).

 Added the facility to derive climatological probability thresholds from a larger

set of observed data. In the EVS Version 2.0 they were derived from the paired

observations, after applying any requested changes in units, temporal

aggregation, or value and date conditions, including the discrete verification

time-period requested in the first verification window. Now, they may be

derived from the original observed data, again after applying any requested

changes in units, temporal aggregation, or date and (observed) value

conditions, but NOT the discrete verification time-period (i.e. the full period of

record covered by the observed file will be used, after applying any changes in

measurement units, temporal aggregation, value conditions on the

observations, and date conditions except for the reduced verification time

period). This option is controlled by a Boolean flag, which is accessible via a

check box in the GUI, and also in the project file under the new XML tag,

labeled use_all_observations_for_climatology. Note that this option only

applies to the derivation of real-valued thresholds corresponding to particular

climatological probabilities of occurrence. For those metrics that incorporate

climatological probabilities in the calculation (e.g. the climatological frequency

in the reliability diagram), the behavior is unchanged (the observations

associated with the conditional pairs are still used).

 Added further date and value (pre-)conditions, including additional statistics for

selecting forecasts based on value (ensemble median and mode, probability of

not exceeding a given value, and the value corresponding to a given non-

exceedence probability) and additional functions for selecting forecasts and

observations based on dates (hours of day in UTC). Thus, much more

complex pre-conditions are now possible, such as selecting only those pairs

(for verification) whose forecast probability of exceeding “flood stage” is greater

than 0.9. This functionality is necessary for real-time verification, where the

aim is to select historical (observed and forecast) analogs to a real-time

96

forecast based on specific properties of that real-time forecast, and possibly

auxiliary information.

 Added the facility to compute the binormal approximation to the Relative

Operating Characteristic (ROC) curve and the associated ROC Score. The

approximation is based on fitting the binormal model to the empirical (POD,

POFD) pairs and is, therefore, dependent on the number of thresholds chosen.

For an exact comparison between the binormal approximation to the ROC

curve and the binormal approximation to the ROC Score, a common number of

thresholds should be adopted for each metric. However, when comparing the

empirical ROC Score to the binormal ROC Score, the results will be closest

when adopting m+1 thresholds, where m is the number of ensemble members

per forecast. Specifically, the empirical ROC Score is derived from ranking of

the POD and POFD data, rather than computing the ROC curve. The ranked

data can take at most m, “jumps” in probability (at the corresponding ensemble

member positions). Hence, the empirical ROC Score is analogous to deriving

the ROC Score from an empirical ROC curve constructed with m+1 thresholds.

 Added the facility to aggregate the observed support prior to verification.

Previously, this was only possible for the forecasts. The same restrictions

apply to change of support of the observations as the forecasts, namely the

aggregated support is exactly divisible by the frequency of the data and

comprises either a mean of the input values if the inputs have instantaneous

support or a total of the input values if the input values are totals.

 Added the option to remove certain lead times from the verification results

based on a minimum sample-size requirement. The sample size constraint is

set by a fraction in the range [0,1]. The fraction is multiplied by the average

number of pairs across all lead times to determine the minimum sample size in

numbers of pairs. For example, a fraction of 0.5 implies that verification results

will not be computed for any lead time with fewer than 50% of the average

number of pairs across all lead times.

The following new features are only accessible via the EVS project file (not the GUI):

 Added the facility to specify the method for computing CRPS in the EVS project

file. By default the Hersbach (2000) method is used, but a method that can

handle null ensemble members has been added. This is specified in the

<crps_method> tag of the crps metric in the EVS project file, with options

97

hersbach and with_nulls. If null members are present, the hersbach option will

lead to all forecasts with one or more null members being removed from the

calculation, and will fail to compute if all forecasts contain one or more null

members.

 The facility to prevent elimination of duplicate pairs (pairs with a common

forecast valid time and lead time) has been added to the EVS project file. This

is implemented via the <eliminate_duplicates> tag of the <paired_data> section

of the EVS project file, with a default value of true. When false, duplicate pairs

will not be eliminated. This is necessary when computing verification metrics for

data that have been pre-pooled across several forecast locations and

contained in a single paired file.

 Added an option to pool the verification pairs across several forecast locations

and to compute the verification metrics from the pooled pairs, rather than

averaging the metrics from the individual locations. Theoretically, this approach

is preferred, but is much more time-consuming in practice, and is usually not

feasible. The default behavior remains to average the verification metrics from

the individual locations. The new option is only accessible via the EVS project

file by adding or setting the <pool_pairs>true</pool_pairs> entry to the XML for

a particular AU, where true implies that pooling will be conducted, and false

implies averaging.

 Added the facility to change the decimal writing precision of the paired data for

a given VU. This applies to both the raw and conditional pairs. The default

behavior is to write forecasts and observations with a maximum precision of

five decimal places (unchanged), with fewer places written as required. The

integer number of decimal places (>0) can now be defined in the project file

using the <paired_write_precision>5</paired_write_precision> tag, which is

part of the <paired_data> block. This functionality is not accessible via the

GUI, and existing pairs will not be re-written with a new decimal precision

(unless re-writing is otherwise necessary).

 Added the facility to set the behavior for removing null ensemble members

when writing the paired file. The default behavior remains to remove null

ensemble members. This may be changed using the

<strip_nulls_from_paired_file>true</strip_nulls_from_paired_file> tag, which is

part of the <paired_data> block. This functionality is not accessible via the

GUI, and existing pairs will not be re-written (unless otherwise required).

98

9.5 Feature upgrades and modifications related to Graphical User's Interface

 Simplified the behavior of the reference forecast selection for skill scores. If a

skill score is selected and only one possible reference forecast is available, this

is automatically selected in the secondary parameters dialog.

 Added a menu to the VU table in the Output window to allow for the

(de)selection of all products and lead times for all available units.

 Added advanced options for computing different averages from the ensemble

members when using single-valued verification metrics.

 Added auto-recall of the last directory accessed when creating, saving and

reading project files so that the last working directory is opened by default.

 Added an option to change the behavior for writing conditional pairs. This is

controlled by a check button in the advanced options (accessed via the “More”

button) in the “Output” section of the first window in the GUI. The default

(slower) behavior is to write conditional pairs.

 Added support for multiple-row selection and deletion in the thresholds table

associated with each verification metric (in the second verification window).

 Added the facility to distinguish between “main” and “auxiliary” thresholds for

metrics that either require or support thresholds. By default, the “main”

thresholds are used for plotting and all thresholds (“main” and “auxiliary”) are

added to any numerical outputs written by the EVS.

 Added functionality to generate verification thresholds semi-automatically for

verification metrics that either require or support thresholds. The thresholds

are generated by entering a number of thresholds, the first threshold value, and

a constant increment (positive or negative) between thresholds. This is useful

for designing plots that show verification scores as a ‘continuous’ function of

threshold value (i.e. outside of the EVS). By default, only those thresholds

identified as “main” thresholds are included in the graphical outputs from the

EVS, but the numerical outputs (on which custom plots are designed) include

all of the thresholds.

 Re-labeled the “Edit no-data value” option in the advanced input data options

dialog to the more generic “Edit other options” and added a check box to

control the way observed data are used to determine climatological probability

thresholds.

 Improved the GUI for selecting pre-conditions to apply to the verification pairs,

in keeping with the enhanced functionality for identifying pre-conditions (see

above).

99

 Added option to iconify (or “minimize” in Windows terminology) the EVS GUI

while processing a verification project; a button labeled “iconify” has been

added to the progress dialog to facilitate this.

 Changed the label Forecast lead period to Forecast lead time horizon in the

first window of the GUI.

 Added the binormal approximation to the ROC and ROC Score to the GUI. In

both cases, the binormal approximation is appended to the results when

selecting to do so under the Advanced Parameter Options dialog. In that case,

the empirical ROC data are plotted as open points and the binormal

approximation is plotted with a line of the same color.

 Removed the text (in forecast time system) for both the start and end dates of

the verification period in the first window of the GUI, reflecting the change to

UTC (see above).

 Added an error message when attempting to temporally aggregate forecasts

over a longer period than the specified forecast lead time horizon (e.g.

attempting to compute monthly averages for forecasts with a lead time horizon

of 14 days).

 Improved the error console in the GUI.

9.6 Feature upgrades and modifications for developers

 Added numerous additional methods for developers that assist in sub-setting

paired data according to varied conditions met in particular rows or columns of

the paired-data matrix. These methods can be found in

evs.utilities.matrix.DoubleMatrix2D. The conditions can be made arbitrarily

complex by chaining together functions provided in the evs.utilities.mathutil

package and applying them to specified rows and/or columns in the paired data

matrix.

 Added a method to linearly interpolate observed data to the nearest forecast

valid time using a weighed (by temporal separation) combination of the two

nearest observations between which the forecast valid time lies. The method is:

evs.data.PairedData.linInterpObsToFcsts. This functionality is currently only

accessible to developers, but may be included in the GUI in future.

 Enhanced the processing of timing information by adding a dedicated class for

representing forecast valid times and lead times: evs.data.ValidTime.

100

10.0 Changes from EVS 1.0 to EVS 2.0

10.1 Feature upgrades and modifications related to Graphical User's Interface

 Removed Time-Series ID and renamed River Segment ID to Location ID.

 Moved basic output options from pop-up window to main Output window.

 Implemented enhanced error dialog with improved error messages.

 Implemented enhanced progress monitor to monitor and display progress of

paired-file reading (and included a pair count in the paired file to enable this).

 Updated the aggregation window to include a weighting input in the table of

verification metrics. Also renamed some features in this window.

 Added the option to select an arbitrary reference forecast for a skill metric.

 Added the option to show skill score decompositions in a tabbed pane (similar

to metrics with one plot per lead time), which may be animated.

 Improved display of zero error line in plots (extended continuously).

 Improved auto-scaling of axes in plots.

10.2 Feature upgrades and modifications not related to Graphical User's Interface

 Added multiplication factor in support dialog to allow simple changes between

measurement units (more complex operations, such as a change in

temperature units, are not yet supported).

 Implemented reading of PI-XML observations

 Implemented reading of PI-XML forecasts

 Implemented reading of ASCII observations

 Implemented reading of ASCII forecasts

 Changed representation of forecast lead times from integer hours to double-

precision float hours to allow verification of forecasts with lead times in

fractional hours, thereby extending the EVS to arbitrary forecast lead times.

 Rewrote the online documentation and updated the mathematical formulas for

all of the verification metrics.

 Implemented an R script for each metric in the EVS to read in the XML output

and produce high quality plots in EPS format for scientific papers.

 Modified calculation of the mean CRPS to account for the relative position of

the observation between the two adjacent ensemble members.

101

 Added ROC score to the available metrics and included a plot by forecast lead

time (same as with other scores). The calculation is based on Mason and

Graham (2000).

 Added a sample size metric and associated plot to compute the basic sample

size information by forecast lead time and threshold. This may be used for

exploratory purposes before computing other verification metrics. In future, we

may add further metrics for data exploration (of the observed and forecast data

rather than the verification pairs).

 Added modified box plot by size of observed value to GUI (previously via the

command line only).

 Modified the spatial aggregation routine to compute the expected (mean) value

of each metric across a set of VUs rather than pooling paired data.

 Included ability to perform a weighted spatial aggregation. The weight is

uniform by default and must sum to 1. A non-uniform weight is also permissible

and a weight of "S" is used to weight by the sample size at the first lead time

(i.e. maintaining constant weights across lead times). If a verification metric is

not available for a given lead time or threshold the weights are automatically

rescaled to sum to 1, maintaining the correct relative weighting of the available

metrics.

 Relaxed constraints on spatial aggregation to allow aggregation for VUs with

different start and end dates.

 Improved the efficiency of file reading for external file formats to ensure that

only data within the specified start and end dates and forecast lead times are

fully read (otherwise only the file headers are read to check this information).

 Implemented backwards compatibility for the above features so that they do not

prevent running of old EVS projects. However, the aggregation routine and

CRPS update has been swapped without the option of backwards compatibility.

Thus, old projects with spatial aggregation will produce different results in the

EVS 2.0. The CRPS update was a bug fix, voiding the need for backwards

compatibility.

 Updated the algorithm for CRPS to the method described in Hersbach, H.,

2000: Decomposition of the Continuous Ranked Probability Score for

Ensemble Prediction Systems. There are small numerical differences between

the old and new algorithms. Also, the procedure described in Hersbach

assumes that a constant number of ensemble members is available, whereas

the previous method for computing CRPS had no such constraint. Thus,

102

differences will be seen when comparing numbers between systems for which

some forecasts comprise null ensemble members.

 Added the decomposition of the CRPS into reliability, resolution and

uncertainty, as described in Hersbach (2000).

 Added the Brier Skill Score (BSS) for an arbitrary reference forecast selected

by the user.

 Added the Continuous Ranked Probability Skill Score (CRPSS) for an arbitrary

reference forecast selected by the user.

11.0 Changes from EVS 1.0 BETA to EVS 1.0

11.1 Feature upgrades and modifications related to Graphical User's Interface

 Removed the table containing reference forecasts, which are not yet enabled.

 Improved the labeling of various options (e.g. 'time zones' rather than 'time

systems').

11.2 Feature upgrades and modifications not related to Graphical User's Interface)

 Allowed real-valued thresholds for all metrics.

 Allowed probability thresholds for all metrics, not just Brier, ROC, and

Reliability.

 Included the option for thresholding with a closed interval (i.e. a "between"

condition).

 Supported the use of symmetric windows around the forecast median in the

Spread-Bias plot.

 Included sharpness (sample-count) plot in the Reliability diagram.

 Changed the definition of probability thresholds in Spread-Bias plot, Mean

Capture Rate diagram and Box Plots. Previously, these thresholds referred to

plotting positions (i.e. plot resolution) and NOT thresholds of the observed

distribution. They now refer to thresholds of the observed distribution for

consistency with all other metrics. Plotting positions are now determined with a

'points count' parameter. For example, a point count of 10 for the Spread-Bias

plot will construct a plot comprising 10 points.

 Added a new 'points count' parameter for the Spread-Bias plot, Mean Capture

Rate diagram, Box Plots and Reliability diagram, which allows the resolution of

those diagrams to be altered.

103

 Included the option to change the default temporal aggregation function from

the mean over a specified period to one of several other functions, including the

minimum, maximum, and total (i.e. accumulation).

 Included units in the plots that comprise real units (mean error, RMSE, Mean

Capture Rate diagram, box plots) once those units have been added to the

observed and forecast support for a VU.

 Included an option to animate a sequence of verification graphics at different

lead times.

 Included writing of sample counts to an XML file when writing other numerical

results.

 Included writing of conditional pairs to XML format as well as the original pairs.

 Included an option to ignore global value conditions on a per-metric basis. For

example, if a condition was applied to consider only those pairs whose

ensemble mean temperatures exceeded freezing, this condition could be

ignored on a per-metric basis.

 Enabled backwards compatibility with old project files (i.e. projects with old

options will run as before).

 Enhanced and updated documentation.

 Improved memory management for AUs.

